32 resultados para CRUCIAL ROLE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Crucial Role of Antioxidant Proteins and Hydrolytic Enzymes in Pathogenicity of Penicillium expansum
Resumo:
Many experimental observations have clearly shown that dislocation interaction plays a crucial role in the kinetics of strain relaxation in epitaxial thin films. A set of evolution equations are presented in this article. The key feature of the equations
Resumo:
Investigation of kerosene combustion in a Mach 2.5 flow was carried out using a model supersonic combustor with cross-section area of 51 mm × 70 mm and different integrated fuel injector/flameholder cavity modules. Experiments with pure liquid atomization and with effervescent atomization were characterized and compared. Direct photography, Schlieren imaging, and planar laser induced fluorescence (PLIF) imaging of OH radical were utilized to examine the cavity characteristics and spray structure. Schlieren images illustrate the effectiveness of gas barbotage in facilitating atomization and the importance of secondary atomization when kerosene sprays interacting with a supersonic crossflow. OH PLIF images further substantiate our previous finding that there exists a local high-temperature radical pool within the cavity flameholder, and this radical pool plays a crucial role in promoting kerosene combustion in a supersonic combustor. Under the same operation conditions, comparison of the measured static pressure distributions along the combustor also shows that effervescent atomization generally leads to better combustion performance than the use of pure liquid atomization. Furthermore, the present results demonstrate that the cavity characteristics can be different in non-reacting and reacting supersonic flows. As such, the conventional definition of cavity characteristics based on non-reacting flows needs to be revised.
Resumo:
Investigation of kerosene combustion in a Mach 2.5 flow was carried out using a model supersonic combustor with cross-section area of 51 mm?70 mm, with special emphases on the characterization of effervescent atomization and the flameholdering mechanism using different integrated fuel injector/flameholder cavity modules. Direct photography, Schlieren imaging, and Planar Laser Induced Fluorescence (PLIF) imaging of OH were utilized to examine the cavity characteristics and spray structure, with and without gas barbotage. Schlieren images illustrate the effectiveness of gas barbotage in facilitating atomization and the importance of secondary atomization when kerosene sprays interacting with a supersonic crossflow. OH-PLIF images further substantiate our previous finding that there exists a local high temperature radical pool within the cavity flameholder and this radical pool plays a crucial role in promoting kerosene combustion in a supersonic combustor. The present results also demonstrate that the cavity characteristics can be different in non-reacting and reacting supersonic flows. As such, the conventional definition of cavity characteristics based on non-reacting flows needs to be revised.
Resumo:
L-selectin plays a crucial role in inflammation cascade by initiating the tethering and rolling of leukocytes on endothelium wall. While many L-selectin molecules are rapidly shed from the cell surface upon activation, the remaining membrane-anchored L-selectin may still play an important role in regulating leukocyte rolling and adhesion with different binding kinetics. Here we developed an in vitro model to activate Jurkat cells via interlukin-8 (IL-8) and quantified the two-dimensional (2D) binding kinetics, using a micropipette aspiration assay, of membrane-anchored L-selectin to P-selectin glycoprotein ligand 1 (PSGL-1) ligand coupled onto human red blood cells (RBCs). The data indicated that L-selectin shedding reduced the amount of membrane-anchored L-selectin and lowered both its reverse and forward rates. These results suggested that the rolling dynamics of activated leukocytes was determined by two opposite impacts: reducing the surface presentation would enhance the rolling but lowering the kinetic rates would decrease the rolling. This finding provides a new insight into understanding how L-selectin shedding regulates leukocyte rolling and adhesion.
Resumo:
Human neutrophils are a type of white blood cell, which forms an early line of defense against bacterial infections. Neutrophils are highly responsive to the chemokine, interleukin-8 (IL-8) due to the abundant distribution of CXCR1, one of the IL-8 receptors on the neutrophil cell surface. As a member of the GPCR family, CXCR1 plays a crucial role in the IL-8 signal transduction pathway in neutrophils. We sequenced the complete coding region of the CXCR1 gene in worldwide human populations and five representative nonhuman primate species. Our results indicate accelerated protein evolution in the human lineage, which was likely caused by Darwinian positive selection. The sliding window analysis and the codon-based neutrality test identified signatures of positive selection at the N-terminal ligand/receptor recognition domain of human CXCR1.
Resumo:
It is well known that the cholinergic system plays a crucial role in learning and memory. Psychopharmacological studies in humans and animals have shown that a systemic cholinergic blockade may induce deficits in learning and memory. Accumulated studies h
Resumo:
Blooms of cyanobacteria, or blue-greens, are known to produce chemicals, such as microcystins, which can be toxic to aquatic and terrestrial organisms. Although previous studies have examined the fate of microcystins in freshwater lakes, primary elimination pathways and factors affecting degradation and loss have not been fully explained. The goal of the present study was to explore sources of algal toxins and investigate the distribution and biodegradation of microcystins in water and sediment through laboratory and field analyses. Water and sediment samples were collected monthly from several locations in Lake Taihu from February 2005 to January 2006. Samples were analyzed for the presence of microcystin. Water and sediment were also used in laboratory studies to determine microcystin degradation rates by spiking environmental samples with known concentrations of the chemical and observing concentration changes over time. Some water samples were found to efficiently degrade microcystins. Microcystin concentrations dropped faster in water collected immediately above lake sediment (overlying water). Degradation in sediments was higher than in water. Based on spatial distribution analyses of microcystin in Lake Taihu, higher concentrations (relative to water concentrations) of the chemical were found in lake sediments. These data suggest that sediments play a critical role in microcystin degradation in aquatic systems. The relatively low levels of microcystins found in the environment are most likely due to bacterial biodegradation. Sediments play a crucial role as a source (to the water column) of bio-degrading bacteria and as a carbon-rich environment for bacteria to proliferate and metabolize microcystin and other biogenic toxins produced by cyanobacteria. These, and other, data provide important information that may be applied to management strategies for improvement of water quality in lakes, reservoirs and other water bodies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Spindlin has been suggested to play an important role during the transition from oocyte maturation to embryo development in mouse, but its homolog similar to the mouse Spindlin in molecular and expression characterization has not been identified up to now in other vertebrates. In this study, a full length of cDNA sequence is cloned and sequenced from the gibel carp (Carassius auratus gibelio). It contains 1240 nucleotides with an open reading frame of 771 nt encoding 257 amino acids. Based on its amino acid sequence alignment and comparison analysis with the known Spin family proteins, the newly cloned Spin is named Carassius auratus gibelio Spindlin (CagSpin). Its product could be detected from mature eggs to blastula embryos, but its content decreased from the two-cell stage, and could not be detected after the gastrula stage. It suggests that the CagSpin should be a maternal protein that is expressed during oocyte maturation, and plays a crucial role in early cleavage of embryogenesis. CagSpin is the first homolog similar to mouse spindlin identified in fish, and also in other vertebrates. GST pull-down assay reveals the first biochemical evidence for the association of CagSpin and p-tubulin, the microtubule component. Therefore, CagSpin may play important functions by interacting with beta-tubulin and other spindle proteins during oocyte maturation and egg fertilization. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Gonadotropin-releasing hormone (GnRH) is a conservative neurodecapeptide family, which plays a crucial role in regulating the gonad development and in controlling the final sexual maturation in vertebrate. Two differing cGnRH-II cDNAs of common carp, namely cGnRH-II cDNA1 and cDNA2, were firstly cloned from the brain by rapid amplification of cDNA end (RACE) and reverse transcription- polymerase chain reaction (RT-PCR). The length of cGnRH-II cDNA1 and cDNA2 was 622 and 578 base pairs (bp), respectively. The cGnRH-II precursors encoded by two cDNAs consisted of 86 amino acids, including a signal peptide, cGnRH-II decapeptide and a GnRH-associated peptide (GAP) linked by a Gly-Lys-Arg proteolytic site. The results of intron trapping and Southern blot showed that two differing cGnRH-II genes in common carp genome were further identified, and that two genes might exist as a single copy. The multi-gene coding of common carp cGnRH-II gene offered novel evidence for gene duplication hypothesis. Using semi-quantitative RT-PCR, expression and relative expression levels of cGnRH-II genes were detected in five dissected brain regions, pituitary and gonad of common carp. With the exception of no mRNA2 in ovary, two cGnRH-II genes could be expressed in all the detected tissues. However, expression levels showed an apparent difference in different brain regions, pituitary and gonad. According to the expression characterization of cGnRH-II genes in brain areas, it was presumed that cGnRH-II might mainly work as the neurotransmitter and neuromodulator and also operate in the regulation for the GnRH releasing. Then, the expression of cGnRH-II genes in pituitary and gonad suggested that cGnRH-II might act as the autocrine or paracrine regulator.
Resumo:
We have investigated the growth of GaN buffers by metalorganic chemical vapor deposition (MOCVD) on GaAs (100) substrates. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to study the dependence of the nucleation on the growth temperature, growth rate, annealing effect, and growth time. A two-step growth sequence must be used to optimize and control the nucleation and the subsequent growth independently. The size and distribution of islands and the thickness of buffer layers have a crucial role on the quality of GaN layers. Based on the experimental results, a model was given to interpret the formation of hexagonal-phase GaN in the cubic-phase GaN layers. Using an optimum buffer layer, the strong near-band emission of cubic GaN with full-width at half maximum (FWHM) value as small as 5.6 nm was observed at room temperature. The background carrier concentration was estimated to be in the range of 10(13) similar to 10(14) cm(-3).
Resumo:
Recursive specifications of domains plays a crucial role in denotational semantics as developed by Scott and Strachey and their followers. The purpose of the present paper is to set up a categorical framework in which the known techniques for solving these equations find a natural place. The idea is to follow the well-known analogy between partial orders and categories, generalizing from least fixed-points of continuous functions over cpos to initial ones of continuous functors over $\omega $-categories. To apply these general ideas we introduce Wand's ${\bf O}$-categories where the morphism-sets have a partial order structure and which include almost all the categories occurring in semantics. The idea is to find solutions in a derived category of embeddings and we give order-theoretic conditions which are easy to verify and which imply the needed categorical ones. The main tool is a very general form of the limit-colimit coincidence remarked by Scott. In the concluding section we outline how compatibility considerations are to be included in the framework. A future paper will show how Scott's universal domain method can be included too.
Resumo:
MF2 (M = Ca, Sr, Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively.
Resumo:
One-dimensional La(OH)(3) nanocrystals with multiform morphologies have been successfully synthesized by a facile bydrothermal process without using any surfactant, catalyst, or template. It can be found that the pH values of the initial solutions and the alkaline sources play a crucial role in controlling the morphologies of the products. The possible formation process of the 1D samples was investigated in detail, Furthermore, the as-prepared Tb3+-doped La(OH)(3) samples show a strong green emission corresponding to D-5(4)-F-7(5) transition of the Tb3+ ions under ultraviolet or low-voltage excitation.