174 resultados para CHIRAL SYMMETRY
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We provide a detailed expression of the vibrational potential for the lattice dynamics of single-wall carbon nanotubes (SWCNT's) satisfying the requirements of the exact rigid translational as well as rotational symmetries, which is a nontrivial generalization of the valence force model for the planar graphene sheet. With the model, the low-frequency behavior of the dispersion of the acoustic modes as well as the flexure mode can be precisely calculated. Based upon a comprehensive chiral symmetry analysis, the calculated mode frequencies (including all the Raman- and infrared-active modes), velocities of acoustic modes, and the polarization vectors are systematically fitted in terms of the chiral angle and radius, where the restrictions of various symmetry operations of SWCNT's are fulfilled.
Resumo:
Based on the relativistic chiral effective field theory, we study the effective mass of the Delta-resonance in medium by investigating the self-energy of the Delta-resonance related to the pi N decay channel in symmetric nuclear matter. We find that the effective mass of Delta-resonance decreases evidently with increasing nuclear density rho. In our calculation, we also consider the influence of the shifts of the nucleon mass, pion mass and its decay constant due to the restoration of chiral symmetry in medium. The results are roughly consistent with the data given by Lawrence Berkeley National Laboratory.
Resumo:
A formalism based on a chiral quark model (chi QM) approach complemented with a one-gluon-exchange model, to take into account the breakdown of the SU(6)circle times O(3) symmetry, is presented. The configuration mixing of wave functions for nucleon and resonances are derived. With few adjustable parameters, differential cross-section and polarized-beam asymmetry for the gamma p -> eta p process are calculated and successfully compared with the data in the center-of-mass energy range from threshold to 2 GeV. The known resonances S-11(1535), S-11(1650), P-13(1720), D-13(1520), and F-15(1680), as well as two new S-11 and D-15 resonances, are found to be dominant in the reaction mechanism. Moreover, connections among the scattering amplitudes of the chi QM approach and the helicity amplitudes, as well as decay widths of resonances, are established. Possible contributions from the so-called missing resonances are investigated and found to be negligible.
Resumo:
Phase structures and transformation mechanisms of nonracemic chiral biological and synthetic polymers are fundamentally important topics in understanding their macroscopic responses in different environments. It has been known for many years that helical structures and morphologies can exist in low-ordered chiral liquid crystalline (LC) phases. However, when the chiral liquid crystals form highly ordered smectic liquid crystal phases, the helical morphology is suppressed due to the crystallization process. A double-twisted morphology has been observed in many liquid crystalline biopolymers such as dinoflaggellate chromosomes (in Prorocentrum micans) in an in vivo arrangement. Helical crystals grown from solution have been reported in the case of Bombyx mori silk fibroin crystals having the beta modification. This study describes a synthetic nonracemic chiral main-chain LC polyester that is able to thermotropically form helical single lamellar crystals. Flat single lamellar crystals can also be observed under the same crystallization condition. Moreover, flat and helical lamellae can coexist in one single lamellar crystal, within which one form can smoothly transform to the other. Both of these crystals possess the same structure, although translational symmetry is broken in the helical crystals. The polymer chain folding direction in both flat and helical lamellar crystals is determined to be identical, and it is always along the long axis of the lamellae. This finding provides an opportunity to study the chirality effect on phase structure, morphology, and transformation in condensed states of chiral materials. [S0163-1829(99)01042-5].
Resumo:
It is shown that for the screened Coulomb potential and isotropic harmonic oscillator, there exists an infinite number of closed orbits for suitable angular momentum values. At the aphelion (perihelion) points of classical orbits, an extended Runge-Lenz vector for the screened Coulomb potential and an extended quadrupole tensor for the screened isotropic harmonic oscillator are still conserved. For the screened two-dimensional (2D) Coulomb potential and isotropic harmonic oscillator, the dynamical symmetries SO3 and SU(2) are still preserved at the aphelion (perihelion) points of classical orbits, respectively. For the screened 3D Coulomb potential, the dynamical symmetry SO4 is also preserved at the aphelion (perihelion) points of classical orbits. But for the screened 3D isotropic harmonic oscillator, the dynamical symmetry SU(2) is only preserved at the aphelion (perihelion) points of classical orbits in the eigencoordinate system. For the screened Coulomb potential and isotropic harmonic oscillator, only the energy (but not angular momentum) raising and lowering operators can be constructed from a factorization of the radial Schrodinger equation.
Resumo:
For a n-dimensional vector fields preserving some n-form, the following conclusion is reached by the method of Lie group. That is, if it admits an one-parameter, n-form preserving symmetry group, a transformation independent of the vector field is constructed explicitly, which can reduce not only dimesion of the vector field by one, but also make the reduced vector field preserve the corresponding ( n - 1)-form. In partic ular, while n = 3, an important result can be directly got which is given by Me,ie and Wiggins in 1994.
Resumo:
In this paper the symmetries of coupled map lattices (CMLs) and their attractors are investigated by group and dynamical system theory, as well as numerical simulation, by means of which the kink-antikink patterns of CMLs in space-amplitude plots are discussed.
Receptivity to free-stream disturbance waves for blunt cone axial symmetry hypersonic boundary layer
Resumo:
Based on high-order compact upwind scheme, a high-order shock-fitting finite difference scheme is studied to simulate the generation of boundary layer disturbance waves due to free-stream waves. Both steady and unsteady flow solutions of the receptivity problem are obtained by resolving the full Navier-Stokes equations. The interactions of bow-shock and free-stream disturbance are researched. Direct numerical simulation (DNS) of receptivity to free-stream disturbances for blunt cone hypersonic boundary layers is performed.
Resumo:
We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.
Resumo:
The Talbot effect is one of the most basic optical phenomena that has received extensive investigations both because its new results provide us more understanding of the fundamental Fresnel diffraction and also because of its wide applications. We summarize our recent results on this subject. Symmetry of the Talbot effect, which was reported in Optics Communications in 1995, is now realized as the key to reveal other rules for explanation of the Talbot effect for array illumination. The regularly rearranged-neighboring-phase-differences (RRNPD) rule, a completely new set of analytic phase equations (Applied Optics, 1999), and the prime-number decomposing rule (Applied Optics, 2001) are the newly obtained results that reflect the symmetry of the Talbot effect in essence. We also reported our results on the applications of the Talbot effect. Talbot phase codes are the orthogonal codes that can be used for phase coding of holographic storage. A new optical scanner based on the phase codes for Talbot array illumination has unique advantages. Furthermore, a novel two-layered multifunctional computer-generated hologram based on the fractional Talbot effect was proposed and implemented (Optics Letters, 2003). We believe that these new results should bring us more new understanding of the Talbot effect and help us to design novel optical devices that should benefit practical applications. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel method for measuring the coma of a lithographic projection system is proposed and the principle of the method is described. By utilizing mirror-symmetry marks, the adverse effects of axial aberrations on the coma measurement are avoided. Experimental results demonstrated that the method has high accuracy. Compared with TAMIS, the conventional technique used for coma measurement, the method is more reliable because the influences of the process factors on the lateral displacements have been considered. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The numerical simulation of the wavefronts diffracted by apertures with circular symmetry is realized by a numerical method. It is based on the angular spectrum of plane waves, which ignored the vector nature of light. The on-axial irradiance distributions of plane wavefront and Gauss wavefront diffracted by the circular aperture have been calculated along the propagation direction. Comparisons of the simulation results with the analytical results and the experimental results tell us that it is a feasible method to calculate the diffraction of apertures. (c) 2006 Published by Elsevier GmbH.