103 resultados para AREA OPTOELECTRONIC DEVICES

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupling and packaging have become decisive factors in the final performance and cost of high-frequency optoelectronic devices. Here, we report the design and successful fabrication of a silicon bench that integrates a V-groove and high-frequency coplanar waveguide (CPW) on the same high-resistivity silicon wafer as an effective optoelectronic packaging solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of bonding-wire compensation on the capacitances of both the submount and the laser diode is demonstrated in this paper. The measured results show that the small-signal magnitude-frequency responses of the TO packaged laser and photodiode modules can be improved by properly choosing the length of the bonding wire. After packaging, the phase-frequency responses of the laser modules can also be significantly improved (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this contribution we report the research and development of 1.55 mu m InGaAsP/InP gain-coupled DFB laser with an improved injection-carrier induced grating and of high performance 1.3 mu m and 1.55 mu m InGaAsP/InP FP and DFB lasers for communications. Long wavelength strained MQW laser diodes with a very low threshold current (7-10 mA) have been fabricated. Low pressure MOVPE technology has been employed for the preparation of the layered structure. A novel gain-coupled DFB laser structure with an improved injection-carrier modulated grating has been proposed and fabricated. The laser structures have been prepared by hybrid growth of MOVPE and LPE techniques and reasonably good characteristics have been achieved for resultant lasers. High performance 1.3 mu m and 1.55 mu m InGaAsP/InP DFB lasers have successfully been developed for CATV and trunk line optical fiber communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The semiconductor photonics and optoelectronics which have a great significance in the development of advanced high technology of information systems will be discussed in this paper. The emphasis will be put on the recent research carried out in our laboratory in enhanced luminescence from low dimensional materials such as SiGe/Si and Er-doped Si-rich SiO2/Si and Er-doped SixNy/Si. A ring shape waveguide structure, used to promote the effective absorption coefficient in PIN photodetector for 1.3 mu m wavelength and a resonant cavity enhanced structure, used to improve the quantum efficiency and response in heterostructure photo-transistor (HPT), are also proposed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si-based optoelectronic devices, including stimulated emission from Si diode, 1.3 and 1.5mum SiGe photodetector with quantum structures, 1GHz MOS optical modulator, SOI optical switch matrix and wavelength tunable filter are reviewed in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the packaging of optoelectrome device, a problem always met is the instability of output power. The main effect causing this problem, Fabry-Perot interference, is discussed in this paper. Both theoretical analysis and experimental test are carried out and in good agreement. As an example of avoiding the disadvantage of Fabry-Perot interference, the packaging process of Silicon-on-Insulator (SOI) based Variable Optical Attenuator(VOA) is shown at last.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report some investigations on vertical cavity surface emitting laser (VCSEL) arrays and VCSEL based optoelectronic smart photonic multiple chip modules (MCM), consisting of 1 x 16 vertical cavity surface emitting laser array and 16-channel lasers driver 0.35 mum CMOS circuit. The hybrid integrated multiple chip modules based on VCSEL operate at more than 2GHz in -3dB frequency bandwidth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this contribution we report the research and development of 1.55 mu m InGaAsP/InP gain-coupled DFB laser with an improved injection-carrier induced grating and of high performance 1.3 mu m and 1.55 mu m InGaAsP/InP FP and DFB lasers for communications. Long wavelength strained MQW laser diodes with a very low threshold current (7-10 mA) have been fabricated. Low pressure MOVPE technology has been employed for the preparation of the layered structure. A novel gain-coupled DFB laser structure with an improved injection-carrier modulated grating has been proposed and fabricated. The laser structures have been prepared by hybrid growth of MOVPE and LPE techniques and reasonably good characteristics have been achieved for resultant lasers. High performance 1.3 mu m and 1.55 mu m InGaAsP/InP DFB lasers have successfully been developed for CATV and trunk line optical fiber communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The semiconductor photonics and optoelectronics which have a great significance in the development of advanced high technology of information systems will be discussed in this paper. The emphasis will be put on the recent research carried out in our laboratory in enhanced luminescence from low dimensional materials such as SiGe/Si and Er-doped Si-rich SiO2/Si and Er-doped SixNy/Si. A ring shape waveguide structure, used to promote the effective absorption coefficient in PIN photodetector for 1.3 mu m wavelength and a resonant cavity enhanced structure, used to improve the quantum efficiency and response in heterostructure photo-transistor (HPT), are also proposed in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics. Most crystal growth processes involve fluid flows, such as flows in the melt, solution or vapor. Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices. The application of devices requires large diameter crystals with a high degree of crystallographic perfection, low defect density and uniform dopant distribution. In this article, the flow models developed in modeling of the crystal growth processes such as Czochralski, ammonothermal and physical vapor transport methods are reviewed. In the Czochralski growth modeling, the flow models for thermocapillary flow, turbulent flow and MHD flow have been developed. In the ammonothermal growth modeling, the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems. In the physical vapor transport growth modeling, the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth. In addition, perspectives for future studies on crystal growth modeling are proposed. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface texturization is an effective way to enhance the absorption of light for optoelectronic devices but it also aggravates the surface recombination by enlarging the surface area. In order to evaluate the influence of texture structures on the surface recombination, an effective surface recombination velocity is defined which is assumed to have an equivalent recombination effect on a flat surface. Based on numerical and analytical calculation, the dependences of effective surface recombination on the pattern geometry, the surface recombination velocity, and the diffusion length are analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present a novel growth of grade-strained bulk InGaAs/InP by linearly changing group-III TMGa source flow during low-pressure metalorganic vapor-phase epitaxy (LP-MOVPE). The high-resolution X-ray diffraction (HRXRD) measurements showed that much different strain was simultaneously introduced into the fabricated bulk InGaAs/InP by utilizing this novel growth method. We experimentally demonstrated the utility and simplicity of the growth method by fabricating common laser diodes. As a first step, under the injection current of 100 mA, a more flat gain curve which has a spectral full-width at half-maximum (FWHM) of about 120 nm was achieved by using the presented growth technique. Our experimental results show that the simple and new growth method is very suitable for fabricating broad-band semiconductor optoelectronic devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SOI (silicon-on-insulator) is a new material with a lot of important performances such as large index difference, low transmission loss. Fabrication processes for SOI based optoelectronic devices are compatible with conventional IC processes. Having the potential of OEIC monolithic integration, SOI based optoelectronic devices have shown many good characteristics and become more and more attractive recently. In this paper, the recent progresses of SOI waveguide devices in our research group are presented. By highly effective numerical simulation, the single mode conditions for SOI rib waveguides with rectangular and trapezoidal cross-section were accurately investigated. Using both chemical anisotropic wet etching and plasma dry etching techniques, SOI single mode rib waveguide, MMI coupler, VOA (variable optical attenuator), 2X2 thermal-optical switch were successfully designed and fabricated. Based on these, 4X4 and 8X8 SOI optical waveguide integrated switch matrixes are demonstrated for the first time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we presents the characterization technique of high-speed optoelectronics devices based electrical and optical spectra, which is as important access to the devices performance as the prevalent vector network analyzer (VNA) sweeping method. The measurement of additional modulation of laser and frequency response of photodetector from electrical spectra, and the estimation of the modulation indexes and the chirp parameters of directly modulated lasers based on optical spectra analysis, are given as examples.