254 resultados para 234Th int
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A simulation model of a floating half zone was suggested by steady numerical simulation and experiment respectively, in the previous papers [Q.S. Chen, W.R. Hu, Int. J. Mass Heat Transfer 40 (1997) 757; J.H. Han, Y. Ar, R. Zhou, W.R. Hue, Int. J. Mass Heat Transfer 40 (1997) 2671]. In the present paper, the simulation model is studied by using the method of unsteady and three-dimensional numerical simulation, and the transient process from steady convection to oscillatory convection is especially analyzed. Comparison of onsets of oscillation for both simulation model and the usual model were obtained, and the results show that the critical Marangoni number of the simulation model is obviously smaller than that of the usual model for the same slender liquid bridge. This implies that the usual model of a floating half zone gives a lower estimation on the onset of oscillation for floating zone convection.
Resumo:
In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size dependence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general couple stress theory and three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom mu(i). omega(i) is called micro-rotation and is the sum of material rotation plus the particles' relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press) and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient dominance zone is characterized by the intrinsic material length l(1). Outside the strain gradient dominance zone, the computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack tip is higher than that of the classical field and tends to the square root singularity, which has important consequences for crack growth in materials by decohesion at the atomic scale. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A new phenomenological deformation theory with strain gradient effects is proposed. This theory, which belongs to nonlinear elasticity, fits within the framework of general couple stress theory and involves a single material length scale l. In the present theory three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom u(i). omega(i) has no direct dependence upon ui and is called the micro-rotation, i.e. the material rotation theta(i) plus the particle relative rotation. The strain energy density is assumed to only be a function of the strain tensor and the overall curvature tensor, which results in symmetric Cauchy stresses. Minimum potential principle is developed for the strain gradient deformation theory version. In the limit of vanishing 1, it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in details. Comparisons between the present theory and the theory proposed by Shizawa and Zbib (Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory gradient elastoplasticity with dislocation density Censor: fundamentals. Int. J. Plast. 15, 899) are given. With the same hardening law as Fleck et al. (Fleck, N.A., Muller, G.H., Ashby, M.F., Hutchinson, JW., 1994 Strain gradient plasticity: theory and experiment. Acta Metall. Mater 42, 475), the new strain gradient deformation theory is used to investigate two typical examples, i.e. thin metallic wire torsion and ultra-thin metallic beam bend. The results are compared with those given by Fleck et al, 1994 and Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109). In addition, it is explained for a unit cell that the overall curvature tensor produced by the overall rotation vector is the work conjugate of the overall couple stress tensor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A new kind of failure mode is observed in circular brass foils in which their peripheries are fixed and their surfaces are subjected to a long pulsed laser over a central region. The failure is classified into three stages; they are referred to as thermal bulging, localized shear deformation and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. To study the failure mode, we investigate the non-linear response of heated, non-homogeneous circular plates. Based on the large deflection equations of Berger [J. Appl. Mech. 22 (3), 465-472 (1965)], Ohnabe and Mizuguchi [Int. J. Non-Linear Mech. 28 (4), 365-372 (1993)] and the parabolic shear deformation theory of Bhimaraddi and Stevens [J. Appl. Mech. 51 (1), 195-198 (1984)], we have derived new coupled governing equations of shear deformation and deflection. The new equations are solved, for the plate with a clamped edge, by the Galerkin and iterative methods. The numerical results for the shear deformation distribution are in good agreement with the experimental observation.
Resumo:
In this paper, the problem of a crack perpendicular to and terminating at an interface in bimaterial structure with finite boundaries is investigated. The dislocation simulation method and boundary collocation approach are used to derive and solve the basic equations. Two kinds of loading form are considered when the crack lies in a softer or a stiffer material, one is an ideal loading and the other one fits to the practical experiment loading. Complete solutions of the stress field including the T stress are obtained as well as the stress intensity factors. Influences of T stress on the stress field ahead of the crack tip are studied. Finite boundary effects on the stress intensity factors are emphasized. Comparisons with the problem presented by Chen et al. (Int. J. Solids and Structure, 2003, 40, 2731-2755) are discussed also.
Resumo:
<正> 国际尖端材料技术协会(SAMPE:Society for the Advancement of Material and Process Engineering)于1992年10月20—22月在加拿大多伦多市召开了两个国际学术会议:第24届国际SAMPE技术会议(24th Int.SAMPE Techn。Coaf。)和第3届国际金属与金属加工会议(3rd Int.SAMPE Metals and Metals Processin Conf.)。两个会议同时举行,全体会议(Plenary Session)在一个会场举行。前者的主题是“先进材料迎接经济的挑战”;后者的主题是“合成与加工的新进展”.尽管此二会议是在西方发达国家经济很不景
Resumo:
基于线性压电材料的复势理论,通过解析分析,导出了一种分析有限压电板裂纹问题的解析数值方法.首先,计算了含中心裂纹有限板的断裂参数,与Woo和Wang的解析数值法(Int J Fract,1993,62:203~218)相比较,表明该方法具有很高的精度和很好的计算效率.随后,采用该方法和有限元法计算了PZT-4紧凑拉伸试样在绝缘裂纹面边界条件下断裂时的断裂参数,发现各断裂参数的临界值分散性很大,不能作为压电材料的单参数断裂准则.进而,针对试样真实的裂隙形状,采用有限元法计算了裂隙尖端的应力、电位移场,比较了裂隙内介质的介电性能对裂隙尖端场的影响,计算了带微裂纹的真实裂隙模型的断裂参数并进行了理论分析.
Resumo:
It is to investigate molecule interactions between antigen and antibody with ellipsometric imaging technique and demonstrate some features and possibilities offered by applications of the technique. Molecule interaction is an important interest for molecule biologist and immunologist. They have used some established methods such as immufluorcence, radioimmunoassay and surface plasma resonance, etc, to study the molecule interaction. At the same time, experimentalists hope to use some updated technique with more direct visual results. Ellipsometric imaging is non-destructive and exhibits a high sensitivity to phase transitions with thin layers. It is capable of imaging local variations in the optical properties such as thickness due to the presence of different surface concentration of molecule or different deposited molecules. If a molecular mono-layer (such as antigen) with bio-activity were deposited on a surface to form a sensing surface and then incubated in a solution with other molecules (such as antibody), a variation of the layer thickness when the molecules on the sensing surface reacted with the others in the solution could be observed with ellipsometric imaging. Every point on the surface was measured at the same time with a high sensitivity to distinguish the variation between mono-layer and molecular complexes. Ellipsometric imaging is based on conventional ellipsometry with charge coupled device (CCD) as detector and images are caught with computer with image processing technique. It has advantages of high sensitivity to thickness variation (resolution in the order of angstrom), big field of view (in square centimeter), high sampling speed (a picture taken within one second), and high lateral resolution (in the order of micrometer). Here it has just shown one application in study of antigen-antibody interaction, and it is possible to observe molecule interaction process with an in-situ technique.
Resumo:
Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4:2244-2251; Int. J. Multiphase Flow 2000; 26:1583-1607). To address the particle motion at a moderate Reynolds number, spectral element method is employed to provide an instantaneous wake flow field for particle dynamics equations, which are solved to make a detail classification of the patterns in relation to the Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes number at a high Froude number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared Froude number is introduced and threshold values of this parameter are evaluated that delineate the different regions of particle behavior. The parameter describes approximately the gravitational settling velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a little, the parameter can still make a good qualitative classification of particle motion patterns as the inner diameter changes.
Resumo:
Two kinds of silanes, 3-glycidoxypropyltrimethoxysilane (GLYMO) and 3-trimethoxysililpropylmethacrylate (TMSPM), were used to prepare ormosil waveguide films by the sol-gel method. Thirty percent Ti(OBu)(4) and 70% silane were contained in the precursor sets. The properties of films were measured by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV/VIS/NIR spectrophotometer (UV-vis), atomic force microscopy (AFM), m-line and scattering-detection method. The films from GLYMO and TMSPM precursors exhibit similar thickness (2.58 mu m for GLYMO, 2.51 mu m for TMSPM) and refractive index (1.5438 for GLYMO, 1.5392 for TMSPM, lambda=632.8 nm), but the film from TMSPM precursor has higher propagation loss (1.024 dB/cm, lambda=632.8 nm) than the film prepared from GLYMO (0.569 dB/cm, lambda=632.8 nm). Furthermore, the film prepared from TMSPM is easy to be opaque and cracks during coating whereas the same phenomenon was not found for the film prepared with GLYMO. It is confirmed that GLYMO is a better precursor than TMSPM for waveguide film preparation. (C) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
以三硝基甲苯(INT)、六六六、滴滴涕(DDT)、对硫磷(E-605)、氯化汞分别进行白鲢鱼种的急性致毒实验,与对照组相比,鱼血清谷草转氨酶活性显著增加;对硫磷还引起血清谷丙转氨酶活性的升高。血清转氨酶活性增加的程度与氯化汞浓度相关。不同种类的我国淡水鲤科鱼类、不同鱼龄、不同水体以及短期饥饿、惊扰及网箱饲养对血清转氨酶活性没有影响,但水温升高或溶氧低于1ppm会使鱼血清谷草转氨酶活性升高。水温与鱼血清谷草转氨酶活性有相关性。
Resumo:
Microcystin (MC) problem made more and more care about in China, intercellular MC (Int-MC) and cellular MC (Cel-MC) were important contents to reflect the producing-MC ability by cyanobacteria and by lakes. To study the correlations between Int-MC, Cel-MC concentration and biological and environmental factors, eight cyanobacterial blooming lakes were studied in the middle and lower reaches of the Yangtze River. Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR) were the primary toxin variants in our data. From the linear correlations between MC and environmental factors, cellular-YR had significant correlation with most of chemical factors except total nitrogen (TN) and the ratio of total nitrogen and total phosphorus (TN/TP), most intracellular MC analogues had significant correlations with total dissolved nitrogen (TDN), ammonium (NH4+), nitrite (NO2-), TP, total dissolved phosphorus (TDP), Microcystis. From the canonal correspondence analysis, Int-MC concentrations were closely related with the chemical and biological factors, such as TP, total organic carbon (TOC), chlorophyll a (Chl a), Microcystis biomass, et al. While Cel-MC contents, especially Cel-RR and Cel-LR, were closely related with light environmental in the lakes such as water depth and transparence.
Resumo:
This paper proposes novel fast addition and multiplication circuits that are based on non-binary redundant number systems and single electron (SE) devices. The circuits consist of MOSFET-based single-electron (SE) turnstiles. We use the number of electrons to represent discrete multiple-valued logic states and we finish arithmetic operations by controlling the number of electrons transferred. We construct a compact PD2,3 adder and a 12x12bit multiplier using the PD2,3 adder. The speed of the adder can be as high as 600MHz with 400nW power dissipation. The speed of the adder is regardless of its operand length. The proposed circuits have much smaller transistors than conventional circuits.
Resumo:
Bulge test combined with a refined load-deflection model for long rectangular membrane was applied to determine the mechanical and fracture properties of PECVD silicon nitride (SiNx) thin films. Plane-strain modulus E-ps prestress s(0), and fracture strength s(max) of SiNx thin films deposited both on bare Si substrate and on SiO2-topped Si substrate were extracted. The SiNx thin films on different substrates possess similar values of E-ps and s(0) but quite different values of s(max). The statistical analysis of fracture strengths were performed by Weibull distribution function and the fracture origins were further predicted.
Resumo:
The mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates were characterized using bulge testing combined with a refined load-deflection model for long rectangular membranes. Plane-strain modulus E-ps, prestress so, and fracture strength s(max) for 3C-SiC thin films with thickness of 0.40 mu m and 1.42 mu m were extracted. The E, values of SiC are strongly dependent on grain orientation. The thicker SIC film presents lower so than the thinner film due to stress relaxation. The s(max) values decrease with increasing film thickness. The statistical analysis of the fracture strength data were achieved by Weibull distribution function and the fracture origins were predicted.