253 resultados para heat pump dryer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymmetric MOSFET-C band-pass filter(BPF)with on chip charge pump auto-tuning is presented.It is implemented in UMC (United Manufacturing Corporation)0.18μm CMOS process technology. The filter system with auto-tuning uses a master-slave technique for continuous tuning in which the charge pump OUtputs 2.663 V, much higher than the power supply voltage, to improve the linearity of the filter. The main filter with third order low-pass and second order high-pass properties is an asymmetric band-pass filter with bandwidth of 2.730-5.340 MHz. The in-band third order harmonic input intercept point(HP3) is 16.621 dBm,wim 50 Ω as the source impedance. The input referred noise iS about 47.455μVrms. The main filter dissipates 3.528 mW while the auto-tuning system dissipates 2.412 mW from a 1.8 V power supply. The filter with the auto-tuning system occupies 0.592 mm~2 and it can be utilized in GPS (global positioning system)and Bluetooth systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intensity-dependent two-photon absorption and nonlinear refraction coefficients of GaP optical crystal at 800 nm were measured with time-resolved femtosecond pump-probe technique. A nonlinear refraction coefficient of 1.7*10^(-17) m2/W and a two-photon absorption coefficient of 1.5*10^(-12) m/W of GaP crystal were obtained at a pump intensity of 3.5*10^(12) W/m2. The nonlinear refraction coefficient saturates at 3.5*10^(12) W/m2, while the two-photon absorption coefficient keeps linear increase at 6*10^(12) W/m2. Furthermore, fifth-order nonlinear refraction of the GaP optical crystal was revealed to occur above pump intensity of 3.5*10^(12) W/m2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two semiconductor saturable absorber mirrors (SESAMs), of which one is coated with 50% reflection film on the top and the other is not, were contrastively studied in passively mode-locked solid-state lasers which were pumped by low output power laser diode (LD). Experiments have shown that reducing the modulation depth of SESAM by coating partial reflection film, whose reflectivity is higher than that between SESAM and air interface, is an effective method to get continuous wave (CW) mode-locking instead of Q-switched mode-locking (QML) in low power pumped solid-state lasers. A simple Nd:YVO4 laser pumped by low power LD, in which no water-cooling system was used, could obtain CW mode-locking by the 50% reflector coated SESAM with average output power of ~ 20 mW

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The now and heat transfer characteristics of China No. 3 aviation kerosene in a heated curved tube under supercritical pressure are numerically investigated by a finite volume method. A two-layer turbulence model, consisting of the RNG k-epsilon two-equation model and the Wolfstein one-equation model, is used for the simulation of turbulence. A 10-species kerosene surrogate model and the NIST Supertrapp software are applied to obtain the thermophysical and transport properties of the kerosene at various temperature under a supercritical pressure of 4 MPa. The large variation of thermophysical properties of the kerosene at the supercritical pressure make the flow and heat transfer more complicated, especially under the effects of buoyancy and centrifugal force. The centrifugal force enhances the heat transfer, but also increases the friction factors. The rise of the velocity caused by the variation of the density does not enhance the effects of the centrifugal force when the curvature ratios are less than 0.05. On the contrary, the variation of the density increases the effects of the buoyancy. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations of the multi-shock interactions observable around hypersonic vehicles were carried out by solving Navier-Stokes equations with the AUSMPW scheme and the new type of the IV interaction created by two incident shock waves was investigated in detail. Numerical results show that the intersection point of the second incident shock with the bow shock plays important role on the flow pattern, peak pressures and heat fluxes. In the case of two incident shocks interacting with the bow shock at the same position, the much higher peak pressure and more severe heat transfer rate are induced than the classical IV interaction. The phenomenon is referred to as the multi-shock interaction and higher requirements will be imposed on thermal protection systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in this paper results obtained from a parabolic flight campaign regarding ethanol sessile drop evaporation under reduced gravity conditions. Drops are created using a syringe pump by means of injection through a PTFE (polytetrafluoroethylene) substrate. The drops are recorded using a video camera and an infrared camera to observe the thermal motion inside the drop and on the heating substrate. The experimental set-up presented in this paper enables the simultaneous visualization and access to the heat flux density that is transferred to the drop using a heat flux meter placed between the heating block and the PTFE substrate. We evidence original thermal spreading phenomena during the ethanol drop creation on a heated PTFE substrate. The drop exhibits specific behaviour which is discussed here. This work is performed in the frame of a French-Chinese collaboration (project IMPACHT) for future experiments in a Chinese scientific satellite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boiling is an extremely complicated and illusive process. Microgravity experiments offer a unique opportunity to study the complex interactions without external forces, such as buoyancy, which can affect the bubble dynamics and the related heat transfer. Furthermore, they can also provide a means to study the actual influence of gravity on the boiling. Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments both in normal gravity and in short-term microgravity in the Drop Tower Beijing and numerical simulations have also been performed. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. It was found that the bubble dynamics in microgravity has a distinct difference from that in normal gravity, and that the heat transfer characteristic is depended upon the bubble dynamics. Lateral motions of bubbles on the heaters were observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drove it to detach from the heaters. Slight enhancement of heat transfer on wires is observed in microgravity, while diminution is evident for high heat flux in the plate case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modelling study is performed to compare the plasma °ow and heat transfer char- acteristics of low-power arc-heated thrusters (arcjets) for three di®erent propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equa- tions, which take into account the e®ects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, veloc- ity and Mach number distributions calculated within the thruster nozzle obtained with di®erent propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the °ow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appear- ing near the cathode tip; the °ow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant °ows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, speci¯c enthalpies and thermal conductivities, are di®erent, there are appreciable di®er- ences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest speci¯c impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling studies are preformed to investigate the plasma and heat transfer characteristics of a low power argon arcjet thruster. Computed temperature, velocity, static pressure, and Mach number distribution in arcjet thruster under typical operating condition are presented in this paper. It shows that the performance data from numerical modeling results are basically consistent with the experimental measured values.