487 resultados para Tolerância a Pb e Zn
Resumo:
对生物小分子体系及人体血浆多元本系中稀土化学形态的研究是考察体内稀土吸收、代谢和生物效应的关键,对阐明稀土对环境和人体健康的影响具有十分重要的意义。本文用pH滴定法和数学模型法研究了生物小分子体系及人体血浆中稀土、钙和锌的化学形态。取得了很有价值的新结果。1.稀土及钙、锌生物小分子溶液体系的研究(1)在模拟生理条件下,用pH滴定法对Pr、Gd、Tb、Yb、Ca、Zn六种金属离子与乳酸、天冬酰胺、瓜氨酸、硫代苹果酸、丁二酸五种小分子生物配体形成的三十个二元体系进行了研究。利用SCOGS2程序处理滴定数据,得到了各体系中合理的物种类型及稳定常数值。在两种氨基酸体系中,稀土和钙均只生成1200型一种配合物,而锌而有1100和1200型两种物种出现。在其它三种小分子有机酸体系中,稀土只生成1100型一种配合物,而钙和锌的物种则相对较多。一般来说,配合物稳定性顺序为:稀 > 稀土 >钙。(2)在模拟生理条件下,用pH滴定法对Pr、Gd、Tb、Yb、Ca、Zn六种金属离子与以柠檬酸为第一配体,分别以乳酸、谷氨酸、组氨酸、脯氨酸、亮氨酸、天冬氨酸为第二配体组成的三十六个三元体系进行了研究,能过计算确定了体系中存在的物种形式,并得到了各三元配合物的稳定常数值。另外,对各体系中金属的物种分布情况也作了深入的研究。各三元体系中均有三元物种生成。除M-Cit-Pro体系中三元配合物种类较少外,其余体系中稀土的三元配合物物种都在两种以上,而锌和钙的三元物种相对要少一些。空间位阻效应对三元配合物稳定性的影响较明显。各体系中稀土离子的配位行为相近,相应三元配合物稳定性有随离子半径减小而增大的趋势。钙的相应三元配合物没有稀土的稳定。锌的配合物稳定性与相应稀土配合物的稳定性相差不大,有的比稀土的低。2.稀土及钙、锌与生物分子多元体系的数学模型法研究(1)利用已有的金属离子与生物小分子二、三元体系的数据,经COMICS程序计算,得到了稀土Pr和Ca共存于以柠檬酸为第一配体,分别以乳酸、谷氨酸、组氨酸、脯氨酸、亮氨酸、天冬氨酸为第二配体的四元体系中金属的物种分布情况,并对体系中的物种变化作了分析。各体系中钙对镨的物种分布基本无影响。而镨对钙有较大影响,且对钙的三元配合物的影响更为强烈。(2)对Tb(III)、Ca(II)和Zn(II)在含有29种配体的人体血浆模型中的物种分布进行了数学模型法研究,并研究了Pb(III)对Ca(II)和Zn(II)物种分布的影响。结果表明,Tb(III)在人体血浆中主要以TbPO_4和Tb_2(CO_3)_3沉淀的形式存在。可溶Tb(III)在浓度较低时,主要与运铁蛋白结合成生[Tb(Tf)];在浓度较高时,主要以[Tb(HSA)]和[Tb_2(Tf)]的形式存在。Tb(III)浓度的升高将导致自由Ca(II)离子含量的增加和Ca(II)配合物含量的降低。Tb(III)在较高浓度时使Zn(II)配合物的含量降低,对[Zn(Tf)]的影响最显著。
Resumo:
在我国某些地区,汞的污染已达到十分严重的程度。如,第二松花江吉林市下游江段,江水总汞含量和鱼体含汞量已能和日本严重汞污染的水俣湾相比。在化学工业,仪表工业中,汞中毒列为严重性占第二位的职业病。因此,汞的污染防治已是急待解决的问题。各种含硫螯合剂可应用于含汞污水处理及汞中毒的治疗。Nyssen等1976年合成了一种缩聚型的缩硫醛大环螯合树脂,作者希望它能成为汞中毒的口服解毒药物。这种产物对Hg~(++)和CH_3Hg~+表现了极强的选择络合性能。但是由于其交联结构不利于Hg~(++)深入树脂内部,因此络合容量太低,仅为2毫克Hg~(++)/克。为了提高其络合能力并进而得到一种水溶性产物,我们合成了二种新的高分子缩硫醛大环螯合剂;其一,以聚苯乙烯为载体的缩硫醛大环螯合剂(简写为PS-S)。其二,以右旋糖苷为载体的缩硫醛大环螯合剂(简写为D-S)。前者做为螯合树脂表现了对Hg~(++)极强的选择络合能力,并且络合容量比缩聚型产物高十倍以上(达30-60毫克Hg~(++)/克)。后者经动物实验证明是一种无毒而有效的高分子汞解毒药。(一)PS-S的合成和络合性能1)醛基的引入采用了不同交联度的凝胶型聚苯乙烯(PS)树脂及不同孔径和表面的大孔型PS树脂做为骨架材料,并采用了二种不同的方法在PS上联结醛基。2)PS-S的合成采用了一系列巯基化合物与PS-CHO反应合成PS-S。例如,用乙二醇二巯基乙酸酯与PS-CHO反应,其它采用的巯基化合物还有:丁二醇二巯基乙酸酯、季戊四醇四巯基乙酸酯、乙硫醇、巯基乙酸、巯基乙酸乙酯等。同一骨架材料的上述各产物的静态Hg~(++)络合容量基本相同,可是含硫环的大小对络合容量影响不大。3)缩硫醛化产物模型化合物的研究合成了几种小分子缩硫醛化产物,对它们进行了MS、NMR谱分析,从以上三种不同类型的缩硫醛化产物本身及其对Hg~(++)作用物的稳定性比较,以第二类大环型产物稳定性最好。4)不同骨架结构的PS-S络合性能比较对不同交联度的凝胶型PS树脂为骨架的PS-S树脂,及不同孔经和比表面积的大孔型PS树脂为骨架的PS-S树脂,分别测定了对Hg~(++)的络合容量,结果表明:大孔型PS-S树脂络合容量最高。当其孔径在100-1000埃,比表面积100米~2/克时,静态络合容量可达65毫克Hg~(++)/克。5)大孔PS-S树脂络合性能的研究①研究了不同测定方法下(静态法、动态法、饱和法),不同测定条件(如树脂用量、Hg~(++)溶液浓度等)对产物络合容量测定的影响。在PS-S装柱反复络合洗脱十次后,树脂络合容量不下降。②不同PH测定PS-S络合容量表明:中性条件下对Hg~(++)络合容量较高。某些有机溶剂(如乙醇、二氧六环)加入Hg~(++)水溶液有利于络合容量的提高。而某些有机溶剂(如丙酮、乙酸)的添加却降低了树脂络合容量。③大孔PS-S树脂对不同金属离子(Pb~(++)、Co~(++)、Cd~(++)、Ca~(++)、Zn~(++))络合容量的测定表明:大孔PS-S树脂对Hg~(++)的络合容量比上述其它金属离子高几十倍到近千倍。(二)D-S的合成与性能研究了介质、温度、时间、反应物用量等条件对反应结果的影响,反应所用Dextran分子量31600,生成的D-CHO含醛基量0.66毫克当量/克。生成的D-S含硫量3.5~6%,分子量约3600。(三)PS-S和D-S对汞中毒巯基酶的解毒实验生物体汞中毒的一个重要毒理是汞使巯基酶中毒,我们采用了PS-S和D-S来对汞中毒的巯基酶-脲酶解毒,使失活的脲酶重新恢复活力,模拟药物在生物体内的解毒过程。实验表明:PS-S和D-S的解毒能力比相同重量的离子交换树脂、巯基树脂、巯基棉等都要强。而且很少量的PS-S和D-S就能使脲酶100%的恢复活力。不同用量的PS-S和D-S使汞中毒脉酶恢复活力的试验显示了良好的线性关系,尤其是D-S,它几乎等当量地(每二个硫原子络合一个汞原子)使汞中毒脲酶恢复活力。(四)D-S的汞解毒及代谢促排过程的同位素示踪试验1)当给小白鼠静脉注射极限注射量(达1毫升/只鼠)的6%D-S水溶液时未发生受试动物的死亡,即LD_(50) > 4000毫克/公斤体重,说明D-S是无毒的。同时病理镜检表明动物肝肾此时无异常。2)分别对10只小白鼠静注致死量的Hg~(++),对其中一组注射D-S(0.2毫升/只)一次,结果3小时后对照组动物全部死亡时,给药组尚存活6只。D-S表面了对受试动物良好的保护作用。病理镜检表明D-S使肾脏的汞中毒病变有所缓解。3)用同位素~(125)I标记D-S,研究了口服,静注D-S在小白鼠体内的代谢情况。试验得到了D-S经静注,口服二种途径在小白鼠体内血、肝、肾、脾等主要脏器中的经时代谢曲线。六小时后D-S大部分代谢出体外,12天后全部代谢出体外。并进而得到了二种不同给药方式的药物代谢动力学方程。D-S口服为:C_血=0.1 (e~(-0.00183t)-e~(-0.01t))符合于一级吸收过程的单室模型 D-S静注为:C_血=0.384 e~(-0.645t) + 0.074 e~(-0.08t) + 0.042~(-0.00464t)符合于快速静注下的三室模型。4)采用~(203)Hg做了D-S口服、静注给药时对Hg~(++)的促排作用的实验,得到了二种给药方式下Hg~(++) 在小白鼠血、肝、肾、脑及全身的促排代谢经时曲线。实验表明D-S对汞有明显促排作用,其中口报组效果更好。D-S促排与代谢同位素示踪试验数据之间表现了有趣的相关性,有助于我们解释D-S对汞促排的机制。动物实验表明:D-S可能成为一种临床使用的副作用小的汞中毒解毒促排新药。
Resumo:
本论文较系统地研究了Naf:on聚合物薄膜冠醚修饰电极阳极溶出伏安法在分析中的应用。首次将Naf:on薄膜冠醚类化合物修饰电极应用于铊、银和铅三种离子的测定,得到了高灵敏度的分析方法亦用于实际样品测定。用涂层法制备了Naf:on聚合物薄膜冠醚(二环已基18-冠-6)化学修饰电极,用这种修饰电极测定金属离子的高灵敏度来源于将Naf:on对大阳离子的强离子交换能力、冠醚类化合物络合金属阳离子形成大阳离子的能力与溶出伏安法的高灵敏度三者的结合,冠醚化合物中性分子可与金属阳离子络合形成大络阳离子:M~(n+)+qC=(MC_q)~(n+)
Resumo:
、I钠原子激光增强电离光谱(LEIS)方法的研究-以石墨杯为原子化器在LEIS方法中,最常见的原子化器是火焰。但由于火焰背景噪声严重且难以克服,在火焰原子化过程中,雾化和热离解不充分,仅有10~(-2)%的分析溶液参与吸收以及火焰气体使测定元素受到高度稀释等不利因素的影响,火焰原子化限制了LEIS方法灵敏度的进一步提高。考虑到石墨炉原子化器较火焰具有取样量少,绝对灵敏度高;样品(包括固态、液态)可直接引入石墨炉内;不会发生如同火焰中所存在的干扰效应;蒸发效率和原子化效率较高,几乎全部样品都能参与吸收等优点,本工作在已建立火焰LEIS方法的实验基础上,将原子化器改换为石墨杯进行了钠原子LEIS方法的研究。到目前为止,国内外仅有的几篇有关石黑炉LEIS的研究报告中,都报导了该方法对钠原子的检出限估计可达到10~(-14)-10~(-15)克,由于此项研究尚处于探索性研究阶段,故有关方法性的系统研究几乎还未见报导。本工作在未使用任何放大器的情况下(实验条件限制)对影响钠原子LEIS信号强度的诸因互进行了实验观察。主要包括:钠原子化条件;激光束位置、阳极电压、激光输出能量、电极位置以及激光脉冲重复率对LEIS信号强度的影响等。并绘制了校准曲线,统计方法的相对标准偏差分别为11%(高浓度)18.2%(低浓度),在现有仪器条件下,还不能测出检出限,测定下限为3*10~(-9)克。对固体粉末直接进行了尝试,检测下限为5*10~(-8)克,进样是为5毫克。在进一步的研究工作中,如有条件使用低噪声的放大器及Bxear积分器,选择门检时间窗,或采用分步激发等手段,估计本方法定会达到预想的高灵敏度,检敏度至少提高了个数量级。对石墨炉原子化LEIS法来说,似比较详细的研究报告,截至实验停止时还未见报导。II原子吸收光谱法对发样中Zn、Cu、Mn、Al的测定发中微量元素ZN、Cu、Mn均属人体必需元素,与人体的生长发育和多种生理功能,临床医学等方面有着极为密切的关系,而Al则被认为是异致某种疾病的元素之一。本工作报告了用火焰法测定Zn、Cu;石墨炉法测定Al、Mn的结果,其中,对Al的测定,为摆脱基体干扰,加入改进剂Mg(NO_3)_2,并采用平台石墨炉进行试验,得到了线性较好的工作曲线,但在实际测定时,由于实验条件的限制,只能采用一般石墨管加基体改进剂对少娄样品中Al含量进行测定。Zn、Cu、Al三种元素由标准曲线法测定;而Mn由于Fe的干扰无法消除而采用标准加入法测定,并因此限制了测定样品数。Cu、ZN、Mn三种元素的回收率分别为102.8%, 99.7%, 102.5%,变异系数为9.6%, 11.3%, 9.7%,对本地居民发中(30个发样)Zn、Cu含量进行测定,Zn、Cu的含量范围为148-318ppm,7.2-15ppm,并计算了Zn/Cu比。本方法对发样中四种元素的测定结果与ICP法进行对照。两种方法测定结果吻合得较好。
Resumo:
胺类萃取剂具有其独特优点,特别是伯胺,因含有活泼氢,既能作为“阴离子交换剂”,又能与被萃的含氧金属络阴离了形成氢键而溶剂化,同时伯胺为一路易斯碱,可作为配体与某些金属离子形成配位键等,因而已广泛地用于金属离子的提纯与分离工业中。然而,1)为了寻找新的、更有效的萃取及协同萃取体系,以适应分析分离各种金属离子,改善金属离子的分离工艺;2)研究萃取和协同萃取的一般规律,探寻其内在规律性,充实完善萃取化学原理的内容;3)研究多元配合物的组成、结构和机理;4)系统地研究和比较不同结构胺类萃取剂与其它萃取剂对金属离子的萃取及协同萃取的相互作用,探讨多元配合物的形成条件等,因此,研究伯胺N_(1923)与其它萃取剂在不同酸度、不同条件,不同体系中对Zn(II)、Cd(II)、Re(III)的萃取及协同萃取具有一定意义。本文分别研究了伯胺N_(1923)与中性磷试剂对ZnCl_2、CdCl_2、Zn(SCN)_2的协同萃取;伯胺N_(1923)与HPMBP对RE(III)的协同萃取以及伯胺N_(1923)在不同介质中对Sc(III)的萃取机理等,并用得到了一些有意义的结果与结论。一、伯胺N_(1923)与中性磷萃取剂(TBP, DBBP)对Zn(II)、Cd(II)的协同萃取1. 伯胺N_(1923)与TBP、DBBP对ZnCl_2的协萃取 研究了伯胺N_(1923)与TBP、DBBP的正庚烷溶液从盐酸介质中对ZnCl_2的萃取机理,用斜率法、等摩尔系列法确定了协萃配合物组成为:(RNH_3Cl)_3·ZnCl_2·B、(RNH_3Cl)_2·ZnCl_2·B (B = TBP·DBBP)协萃反应为:ZnCl_2 + (RNH_3Cl)_3_((o)) + TBP_((o)) →~(K_(12)(TBP) (RNH_3Cl)_3·ZnCl_3·ZnCl_2·TBP_((o)) ZnCl_2+Z/3(RNH_3Cl)_(3(o)) + DBBP_((o)) → (RNH_3Cl)_2 · ZnCl_2·DBBP_((o))协萃配合物生成反应为:(RNH_3Cl)_3·ZnCl_(2(o)) + TBP_((o))→~(B_(12)(TBP) (RNH_3Cl)_3·ZnCl_2·TBP_((o)) (RNH_3Cl)_3·ZnCl_(2(o)) + DBBP_((o)) →~(B_(12)(DBBP) (RNH_3Cl)_2·ZnCl_2·DBBP_((o)) + RNH_3Cl_((o))同时发现,中性磷试剂对Zn(II)的协萃效应大小影响有下列关系:DBBP>TBP。并求得了协萃反应平衡常数和协萃配合物生成反应平衡常数。在研究溶剂对协同效应影响时发现,对芳香烃及其衍生物,分配比(D)与溶剂介电常数(ε)的关系为D_∝1/ε,而对芳香烃及其衍生物,分配比(D)与介电常数(ε)的关系为D_∝ε。讨论了温度对协萃反应的影响,对协萃配合物的IR、NMR谱也进行了研究。2.伯胺N_(1923)与TBP对Zn_(SCN)_2的协同萃取研究了伯胺N_(1923)与TBP的庚烷溶液从硝酸底液中对Zn(SCN)_2的萃取机理,用等摩尔系列法、斜率法确定了TBP和Zn(SCN)_2以及伯胺N_(1923)与TBP对Zn(SCN)_2的协萃配合物组成分别为:Zn(SCN)_2·3TBP. (RNH_3)_2Zn(SCN)_4·TBP,协谇反应为:Zn(SCN)_4~(2-) + (RNH_3NO_3)_(2(o)) + TBP_((o)) → (RNH_3)_2Zn(SCN)_4·TBP_((o)) + 2NO_3~-协萃配合物三种可能生成反应为(RNH_3)_2Zn(SCN)_(4(o)) + TBP_((o)) → ~(B'12) (RNH_3)_2Zn(SCN)_4·TBP_((o)) (a) (RNH_3NO_3)_(2(o)) + Zn(SCN)_2·3TBP_((o)) + 2SCN~-→~(β"12)→(RNH_3)Zn(SCN)_4βTBP_((o))+2TBP_((o))+2NO_3~- (b) (RNH_3NO_3)_(2(o)) + (RNH_3)_2Zn(SCN)_(4(o)) + 2SCN~- + Zn(SCN)_2.3TBP_((o)) →~(β"12)→R(RNH_3)_2Zn(SCN)_4.TBP_((o)) + 2NO_3~- + TBP_((o)) (c) 求得了协萃反应及生成反应的平衡常数,并由生成反应常数可知:β"'_(12) > β'_(12) > β"_(12),即反应(c)对协萃配合物的生成贡献最大,其次反应(a),最小的是反应(b),同时还发现,不同阴离子对协萃效应影响有下列关系:SCN~- > Cl~_。并对协萃配合物的IR谱进行了研究,讨论了温度对协萃反应的影响。3. 伯胺N_(1923)与TBP、DBBP对Cd(II)的协同萃取研究了伯胺N_(1923)与TBP、DBBP的正庚烷溶液从盐酸介质中对Cd(II)的协同萃取,用等摩尔系列法、斜率法确定了协萃配合物组成为(RNH_3Cl)_2·CdCl_2·B,协萃反应及协萃配合物生成的反应分别为:CdCl_2 + 2/3 (RNH_3Cl)_(3(o)) + B_((o)) →~(K_(12)) → (RNH_3Cl)_2·CdCl_2·B_((o)) (RNH_3Cl_3)·CdCl_2_((o)) + B_((o)) →~(BR)(RNH_3Cl)_2·CdCl_2·B_((o)) + RNH_3Cl_((o))求得了协萃反应及生成反应平衡常数,计算了协萃反应的热力学函数值,结果还发现与Zn(II)协同萃取比较,协同效应大小有下列关系:Zn(II) > Cd(II),由实验结果证实了“萃取效应大,则协萃效应小,反之,萃取效应小,则协同效应大”这一结论。并对协萃配合物的IR、NMR谱进行了研究。二. 伯胺N_(1923)与HPMBP对RE(III)的协同萃取研究了伯胺N_(1923)与HPMBP的二甲苯溶液在盐酸介质中对RE(III)的协萃机理(RE~(3+ = La~(3+), Pr~(3+), Eu~(3+), Gd~(3+), Tb~(3+), Er~(3+), Yb~(3+)和Y~(3+))用斜率法及等摩尔系列法确定了协萃配合物组成为RNH_3Ln(PMBP)_4。求得了关于Pr(III)的协萃反应及生成反应的平衡常数值,协萃反应及生成反应分别为:Ln~(3+) + 4HPMBP_((o)) + RNH_3Cl_((o)) → RNH_3LN(PMBP)_(4(o)) + 4H~+ + Cl~- Ln(PMBP)_(3(o)) + RNH_3Cl_((o)) → RNH_3Ln(PMBP)_(4(o)) + H~+ + Cl~- 结果还发现协萃系数(R)随稀土元素的原子序数(Z)递变而出现“双峰效应”(未见文献报道),而且随RNH_3Cl浓度增加到某一一出现反协同效应。同时研究了关于Pr(III)协萃配合物的IR、NMR谱。三、伯胺N_(1923)在硝酸盐及硫氰酸盐混合介质中对Sc(III)的萃取研究了RNH_3NO_3在硝酸盐和硫氰酸盐混合介质中萃取Sc(III)的机理,结果发现,钪是以Sc(OH)_2~+形式萃入有机相的,且SCN~-, NO_3~-对RNH_3nO_3萃取Sc(III)具有协同效应,并且斜率法、连续变化法及PH值测定确定了萃取反应为:Sc(OH)_2~+ + SCN~- + 2(RNH_3NO_3)_(2((o)) → (RNH_3nO_3)_4.Sc(OH)_2SCN_((o)) Sc(OH)_2~+ + SCN~- + NO_3~- + (RNH_3NO_3)_(2(o)) → (RNH_3NO_3)_2.Sc(OH)(SCN)NO_3 + OH~-求得了反应的平衡常数及热力学函数值。
Resumo:
自从1956年Blake等研究HDEHP萃取铀时发现协同效应以来,由于协同萃取具有可以显著地提高萃取效率,改变萃取选择性等优点,所以对协同萃取进行了大量研究工作,目前已广泛应用于核燃料稀有金属湿法冶金分离分析。但协同萃取研究领域十分广阔,新协萃体系,协萃机理和协萃配合物结构等许多方面还有待进一步研究。Fe~(3+)、Zn~(2+)和Cd~(2+)等过渡金属离子常与稀土离子在一起,成为高纯稀土产品的重要杂质元素,因此寻找Fe(III)、Zn(II)和Cd(II)与RE(III)的新协同萃取分离体系,不但具有理论意义,也有实际意义。本文研究了萃取分离中广泛使用的四种萑取剂,甲基膦酸二(1-甲基庚基)酯(P_(350), 以B表示)、仲碳伯胺N_(1923)(以RNH_2表示)、1-苯基-3-甲基-4-苯甲酰基吡唑酮-5(PMBP,以HL表示)和2-乙基基膦酸单(2-乙基已基)酯(P_(507),以HA表示)对盐酸介质中Fe(III)、Zn(II)、Cd(II)和Nd(III)等金属离子的协同萃取,得到了六个新协萃体系,并且对协萃机理和萃取平稀奇规律等进行了研究,得到了一些有意义的结果。
Resumo:
本文分另研究了H[DEHP]从不同酸性介质中萃取稀土(III)(Sc、Y、Ho、Er、yb、Lu)及Fe(III)、Zn(II)的机理及性能。一、H[DEHP]从 H_2SO_4介质中萃取Sc(III)的机理 1. H[DEHP]萃取H_2SO_4及其机理 2. H[DEHP]萃取Sc(III)的机理,用斜率法和饱和法确定了H[DEHP]的正庚烷溶液从H_2SO_4溶液中萃取Sc_2(SO_4)_3的机理及萃合物组成。研究表明,H[DEHP]萃取Sc(III)在高、低两种酸度范围内存在着两种不同的萃取机理。二、H[DEHP]从HCl介质中萃取Ln(III)和Fe(III)的性能及H[DEHP]萃取Ln(III)的机理研究了H[DEHP]的正庚烷溶液从HCl介质中萃取稀土(III)(Sc、Y、Ho、Er、Yb、Lu)和Fe(III)的性能,得出H[DEHP]在相同条件下萃取以上各金属离子的顺序是:Sc(III)>Fe(III)>Lu(III)>Yb(III)>Er(III)>Y(III)>Ho(III), 并计算了各金属离子之间的分离因素(β)。文中还讨论了Sc(III)、Fe(III)、Lu(III)之间的分离以及重稀土离子间的萃取分离,同时与相同实验条件下HEH[EHP]的萃取性能进行了比较,为新的萃取体系提供了一些参数。三、H[DEHP]从不同介质中萃取Fe(III)的机理,研究了H[DEHP]的正率烷溶液从Hcl介质中和H[DEHP]的正庚烷溶液从H_2SO_4介质中萃取Fe(III)的平衡规律;用斜率法、饱和法以及IR和NMR谱等讨论了低酸度下的萃取机理。四、H[DEHP]萃取Zn(II)的机理,研究了H[DEHP]的正率烷溶液从Hcl介中萃取Zn(II)的平衡,利用斜率法、饱和法及SR、NMR谱等讨论了低Hcl浓度下的萃取机理。
Resumo:
本文利用活性碳吸附蔗糖后再与巯基乙酸反应合成了一种新的分离吸附剂-巯基活性碳吸附剂,详细研究了其各种制备条件。实验表明,用这种方法合成的吸附剂是一种非常好的固体吸附剂,不仅能定量吸附各种重金属离子,而且具有很好的吸附脱附特性,其饱和吸附量是目前广泛应用的巯基绵的3~20倍。既克服了因巯基含量高对重金属离子难以洗脱的缺点,又大大提高了分离富集效率。探讨了巯基活性碳吸附剂中吸附因素对吸附能力的贡献,其中活性碳作用占17.3%,蔗糠作用占19.2%,巯基化后引入的吸附作用占63.5%。此三方面相互渗透,相互补充,相互加强,共同完成对重金属子离子的吸附作用。本文还从热力学和动力学两个方面研究了吸附剂对重金属离子的吸附机理。结果表明其吸附过程以化学吸附为主。外表面、内表面吸附率对Cu~(2+)分别为19%;81%;对Pb~(2+)分别为6%,94%,对Zn~(2+)分别为17%和83%,而吸附Cd~(2+)完全由内扩散所控制。并且发现其吸附Cu~(2+)的同时,还将其还原成Cu~o。从静态和动态两个方面探讨了溶液酸度、温度、吸附时间、Ca~(2+)、Na~+等干扰离子,以及重金属离子浓度等对新型分离吸附剂吸附能力的影响。结果表明,此吸附剂具有很高的吸附能力和很好的稳定性,可以应用于实际样品的测定。通过用表面有机合成法将巯基键合在玻碳电极的表面,得到了巯基修饰电极(MAMGCE),此种修饰电极与未加修饰的玻碳电极(GCE)相比,不仅可化学吸附重金属离子如汞离子,而且灵敏度提高了近10倍。当富集时间为3分钟时,其线性范围为1X_(10~(-8))mol/L~1X_(10~(-9))mol/L,相对标准偏差为7.7%。采用电子能谱等方法对MAMGCE电化学性质、电极反应机理进行了探讨,结果表明MAMGCE与Hg~(2+)的反应的产物在氧化及还原状态都存在弱吸附。通过将巯基乙酸作为一种支持电解质将巯基固定在导电聚吡咯薄膜电极上,制得巯基-聚吡咯薄膜修饰电极,该修饰电极保持了巯基的螯合性能,并具有良好的稳定性。此种修饰电极对水溶液中的重金属离子具有很好的吸附作用,其灵敏度与未修饰玻碳电极相比,测汞离子时电沉积提高了三倍,化学吸附时提高了近5倍。对其吸附机理进行的初步探讨证明其对汞离子的吸附为不可逆的产物弱吸附。本文研究了聚苯胺薄膜化学修饰电极对巯基化合物氧化还原的促进作用,系统地探讨了不同聚合介质、酸度等对PAn薄膜化学修饰电极对巯基乙醇促进作用的影响。采用扫描电镜、电子能谱、交流阻抗及拉曼光谱等各种检测手段对这种促进作用进行了探讨,结果表明这种促进作用是对巯基乙醇在PAn薄膜表面的氧化还原过程的一种加强,而这种加强作用是通过-SH与PAn中的N以质子形式加成的。
Resumo:
分析了珠江口海域采集的12个表层沉积物样品重金属(Cu、Pb、Zn、Cd、Hg)的含量分布特征,并对其环境质
Resumo:
We report lithium passivation of the shallow acceptors Zn and Cd in p-type GaAs which we attribute to the formation of neutral Li-Zn and Li-Cd complexes. Similar to hydrogen, another group-I element, lithium strongly reduces the concentration of free holes when introduced into p-type GaAs. The passivation is inferred from an increase of both the hole mobility and the resisitivity throughout the bulk of the sample. It is observed most clearly for Li concentrations comparable to the shallow-acceptor concentration. In addition, compensation of shallow acceptors by randomly distributed donors is present in varying degree in the Li-diffused samples. Unlike hydrogenation of n-type GaAs, Li doping shows no evidence of neutralizing shallow donors in GaAs.
Resumo:
杂质扩散诱导量子阱混杂技术可用于制作腔面非吸收窗口,提高大功率半导体激光器的输出功率。以Zn_3As_2为扩散源,采用闭管扩散方式,在550℃下对650nm半导体激光器的外延片进行了一系列Zn杂质扩散诱导量子阱混杂的实验。实验发现,随着扩散时间从20~120min,样品光致发光(PL)谱蓝移偏移增加,峰值波长蓝移53nm;当扩散时间超过60min后,样品的PL谱中不仅出现了常见的蓝移峰,同时还出现了红移峰,峰值波长红移32nm。分析表明PL谱蓝移来自Zn扩散引起的AlGaInP/GaInP间的量子阱混杂;红移来自Zn杂质扩散对样品中Ga_(0.51)In_(0.49)P缓冲层的影响。还研究了扩散温度(550℃)和扩散时间对样品晶体品质的影响,并在理论上计算了AlGaInP/GaInP量子阱混杂中的Al-Ga的互扩散系数。
Resumo:
High performance InP/InGaAs heterojunction bipolar transistors(HBTs) have been widely used in high-speed electronic devices and optoelectronic integrated circuits. InP-based HBTs were fabricated by low pressure metal organic chemical vapor deposition(MOCVD) and wet chemical etching. The sub-collector and collector were grown at 655 ℃ and other layers at 550 ℃. To suppress the Zn out-diffusion in HBT, base layer was grown with a 16-minute growth interruption. Fabricated HBTs with emitter size of 2.5×20 μm~2 showed current gain of 70~90, breakdown voltage(BV_(CE0))>2 V, cut-off frequency(f_T) of 60 GHz and the maximum relaxation frequency(f_(MAX)) of 70 GHz.