469 resultados para TUNABLE PHOTOLUMINESCENCE
Resumo:
Photoluminescence of some low-dimensional semiconductor structures has been investigated under pressure. The measured pressure coefficients of In0.55Al0.45 As/Al0.5Ga0.5As quantum dots with average diameter of 26, 52 and 62 nm are 82, 94 and 98 meV/GPa, respectively. It indicates that these quantum dots are type-I dots. On the other hand, the measured pressure coefficient for quantum dots with 7 nm in size is -17meV/GPa, indicating the type-II character. The measured pressure coefficient for Mn emission in ZnS:Mn nanoparticles is -34.6meV/GPa, in agreement with the predication of the crystal field theory. However, the DA emission is nearly independent on pressure, indicating that this emission is related to the surface defects in ZnS host. The measured pressure coefficient of Cu emission in ZnS: Cu nanoparticles is 63.2 meV/GPa. It implies that the acceptor level introduced by Cu ions has some character of shallow level. The measured pressure coefficient of Eu emission in ZnS:Eu nanoparticles is 24.1 mev/GPa, in contrast to the predication of the crystal field theory. It may be due to the strong interaction between the excited state of Eu ions and the conduction band of ZnS host.
Resumo:
The photoluminescence of self-assembled InAs/GaAs quantum dots, which are 7.3nm in height and 78nm in base size, was investigated at 15K under hydrostatic pressures up to 9GPa. The emissions from both the ground and the first excited states in large InAs dots were observed. The pressure coefficients of the two emissions are 69 and 72 meV/GPa respectively, which are lower than those of small InAs/GaAs dots. The analysis based on a nonlinear elasticity theory reveals that the small pressure coefficients mainly result from the changes of the misfit strain and the elastic constants with pressure. The pressure experiments suggest that the excited state emissions originate from the optical transitions between the first excited electron states and the first excited hole states.
Resumo:
Mn-doped ZnS nanocrystals of about 3 nm diameter were synthesized by a wet chemical method. X-ray diffraction (XRD) measurements showed that the nanocrystals have the structure of cubic zinc blende. The broadening of the XRD lines is indicative of nanomaterials. Room temperature photoluminescence (PL) spectrum of the undoped sample only exhibited a defected-related blue emission band. But for the doped samples, an orange emission from the Mn2+ T-4(1)-(6)A(1) transition was also observed, apart from the blue emission. The peak position (600 nm) of the Mn2+ emission was shifted to longer wavelength compared to that (584 nm) of bulk ZnS:Mn. With the increase of the Mn2+ concentration, the PL of ZnS:Mn was significantly enhanced. The concentration quenching effect was not observed in our experiments. Such PL phenomena were attributed to the absence of Mn2+ pairs in a single ZnS:Mn nanocrystal, considering the nonradiative energy transfer between Mn2+ ions based on the Poisson approximation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence study of (GaAs1-xSbx/InyGa1-yAs)/GaAs bilayer quantum wells (BQWs) grown by molecular beam epitaxy (MBE) were carried out. Temperature and excitation power dependent photoluminescence (PL) study indicated that the band alignment of the BQWs is type - II. The origin of the double-peak luminescence was discussed. Under optimized growth conditions, the PL emission wavelength from the BQWs has been extend up to 1.31 mu m with a single peak at room temperature.
Resumo:
Photo luminescence (PL) spectroscopy has been used to study InP annealed in phosphorus and iron phosphide ambiences. Noticeable PL emissions related with thermally induced defects have been detected in undoped InP annealed in iron phosphide ambience. Origins of the PL emissions have been discussed. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Molecular beam epitaxy (MBE) growth of (InyGa1-yAs/GaAs1-xSbx)/GaAs bilayer quantum well (BQW) structures has been investigated. It is evidenced by photo luminescence (PL) that a strong blue shift of the PL peak energy of 47 meV with increasing PL excitation power from 0.63 to 20 mW was observed, indicating type II band alignment of the BQW. The emission wavelength at room temperature from (InyGa1-yAs/GaAs1-xSbx)/GaAs BQW is longer (above 1.2 μ m) than that from InGaAs/GaAs and GaAsSb/GaAs SQW structures (1.1 μ m range), while the emission efficiency from the BQW structures is comparable to that of the SQW. Through optimizing growth conditions, we have obtained room temperature 1.31 μ m wavelength emission from the (InyGa1-yAs/GaAs1-xSbx)/GaAs BQW. Our results have proved experimentally that the GaAs-based bilayer (InyGa1-yAs/GaAs1-xSbx)/GaAs quantum well is a useful structure for the fabrication of near-infrared wavelength optoelectronic devices. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The structural and photoluminescence (PL) properties of the InAs quantum dots (QDs) grown on a combined InAlAs and GaAs strained buffer layer have been investigated by AFM and PL measurements. The dependence of the critical thickness for the transition from 2D to 3D on the thickness of GaAs layer is demonstrated directly by RHEED. The effects of the introduced-InAlAs layer on the density and the aspect ratio of QDs have been discussed.
Resumo:
InAs quantum wires (QWRs) have been fabricated on the InP(001), which has been evidenced by TEM and polarized photoluminescence measurements (PPL). The monlayer-splitting peaks (MSPs) in the PL spectrum of InAs QWRs can be clearly observed at low temperature measurements. Supposing a peak-shift of MSP identical to that of bulk material, we obtain the thermal activation energies of up to 5 MSPs. The smaller thermal activation energies for the MSPs of higher energy lead to the fast red-shift of PL peak as a whole.
Resumo:
In this paper, we investigated the Raman scattering and photoluminescence of Zn1-xMnxO nanowires synthesized by the vapor phase growth. The changes of E-2(High) and A(1(LO)) phonon frequency in Raman spectra indicate that the tensile stress increases while the free carrier concentration decreases with the increase of manganese. The Raman spectra exited by the different lasers exhibit the quantum confinement effect of Zn1-xMnxO nanowires. The photoluminescence spectra reveal that the near band emission is affected by the content of manganese obviously. The values Of I-UV/G decrease distinctly with the manganese increase also demonstrate that more stress introduced with the more substitution of Mn for Zn.
Resumo:
In-x Ga1-xN/GaN multiple quantum well (MQW) samples with strain-layer thickness lager/less than the critical one are investigated by temperature-dependent photoluminescence and transmission electron microscopy, and double crystal x-ray diffraction. For the sample with the strained-layer thickness greater than the critical thickness, we observe a high density of threading dislocations generated at the MQW layers and extended to the cap layer. These dislocations result from relaxation of the strain layer when its thickness is beyond the critical thickness. For the sample with the strained-layer thickness greater than the critical thickness, temperature-dependent photoluminescence measurements give evidence that dislocations generated from the MQW layers due to strain relaxation are main reason of the poor photoluminescence property, and the dominating status change of the main peak with increasing temperature is attributed to the change of the radiative recombination from the areas including dislocations to the ones excluding dislocations.
Resumo:
A simple process for fabricating low-cost Si-based continuously tunable long-wavelength resonant-cavity-enhanced (RCE) photodetectors has been investigated. High-contrast SiO2/Si(Deltan similar to2) was employed as mirrors to eliminate the need to grow thick epitaxial distributed Bragg reflectors. Such high-reflectivity SiO2/Si mirrors were deposited on the as-grown InGaAs epitaxy layers, and then were bonded to silicon substrates at a low temperature of 350 C without any special treatment on bonding surfaces, employing silicate gel as the bonding medium. The cost is thus decreased. A thermally tunable Si-based InGaAs RCE photodetector operating at 1.3-1.6 mum was obtained, with a quantum efficiency of about 44% at the resonant wavelength of 1476 nm and a tuning range of 14.5 nm. It demonstrates a great potential for industry processes. (C) 2005 American Institute of Physics.
Resumo:
A novel method to fabricate a thermally tunable filter with a tuning range of 26 nm from 1.504 to 1.530 mum is reported. The high-reffectivity bottom mirror is deposited in the hole formed by anisotropically etching in the basic solution from the backside of the slice with the buried SiO2 layer in silicon-on-insulator substrate as the etching-stop layer. Because of the formation of the mesa and the removing of the substrate of the hole, the power from the metal heater can be more effectively consumed in the crystalline silicon cavity. So it lowers the power consumption and the filter has a higher tuning range. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We employ photoluminescence (PL) and time-resolved PL to study exciton localization effect in InGaN epilayers. By measuring the exciton decay time as a, function of the monitored emission energy at different temperatures, we have found unusual behaviour of the energy dependence in the PL decay process. At low temperature, the measured PL decay time increases with the emission energy. It decreases with the emission energy at 200K, and remains nearly constant at the intermediate temperature of 120K. We have studied the dot size effect on the radiative recombination time by calculating the temperature dependence of the exciton recombination lifetime in quantum dots, and have found that the observed behaviour can be well correlated to the exciton localization in quantum dots. This suggestion is further supported by steady state PL results.
Resumo:
The pressure dependence of the photoluminescence from ZnS : Mn2+, ZnS : Cu2+, and ZnS : Eu2+ nanoparticles were investigated under hydrostatic pressure up to 6 GPa at room temperature. Both the orange emission from the T-4(1) - (6)A(1) transition of Mn2+ ions and the blue emission from the DA pair transition in the ZnS host were observed in the Mn-doped samples. The measured pressure coefficients are -34.3(8) meV/GPa for the Mn-related emission and -3(3) meV/GPa for the DA band, respectively. The emission corresponding to the 4f(6)5d(1) - 4f(7) transition of Eu2+ ions and the emission related to the transition from the conduction band of ZnS to the t(2) level of Cu2+ ions were observed in the Eu- and Cu-doped samples, respectively. The pressure coefficient of the Eu-related emission was found to be 24.1(5) meV/GPa, while that of the Cu-related emission is 63.2(9) meV/GPa. The size dependence of the pressure coefficients for the Mn-related emission was also investigated. The Mn emission shifts to lower energies with increasing pressure and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS : Mn2+ nanoparticles than in bulk. Moreover, the absolute pressure coefficient increases with the decrease of the particle size. The pressure coefficients calculated based on the crystal field theory are in agreement with the experimental results. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The exponential degradation of the photoluminescence (PL) intensity at the near-band-gap was observed in heavily doped or low-quality GaN with pristine surface under continuous helium-cadmium laser excitation. In doped GaN samples, the degradation speed increased with doping concentration. The oxidation of the surface with laser irradiation was confirmed by x-ray photoemission spectroscopy measurements. The oxidation process introduced many oxygen impurities and made an increase of the surface energy band bending implied by the shift of Ga 3d binding energy. The reason for PL degradation may lie in that these defect states act as nonradiative centers and/or the increase of the surface barrier height reduces the probability of radiative recombination.