391 resultados para Stray light crosstalk
Resumo:
InGaN/GaN-multiple-quantum-well-based light emitting diode ( LED) nanopillar arrays with a diameter of approximately 200nm and a height of 700nm are fabricated by inductively coupled plasma etching using Ni self-assembled nanodots as etching mask. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence ( PL) intensity is achieved after the fabrication of nanopillars, and a blue shift and a decrease of full width at half maximum of the PL peak are observed. The method of additional wet etching with different chemical solutions is used to remove the etch-induced damage. The result shows that the dilute HCl ( HCl:H2O=1:1) treatment is the most effective. The PL intensity of nanopillar LEDs after such a treatment is about 3.5 times stronger than that before treatment.
Resumo:
An interesting GaN photodetector structure, which can be used for characterizing the wavelength of incident ultraviolet light, is proposed. It is composed of two back-to-back integrated diodes, i.e. p-n and p-i-n GaN ultraviolet photodiodes with different spectral response. The wavelength of monochromatic ultraviolet light could be identified by measuring the photocurrent ratio value through a simple electronic circuit.
Resumo:
A semicrystalline composite, 3, 4, 9, 10 perylenetetracarboxylic dianhydride (PTCDA) doped N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB), has been fabricated and characterized. An organic light-emitting diode using such a composite in hole injection exhibits the improved performance as compared with the reference device using neat NPB in hole injection. For example, at a luminance of 2000 cd/m(2), the former device gives a current efficiency of 2.0cd/A, higher than 1.6cd/A obtained from the latter device. Furthermore, the semicrystalline composite has been shown thermally to be more stable than the neat NPB thin film, which is useful for making organic light emitting diodes with a prolonged lifetime.
Resumo:
The first demonstration, to our knowledge, of the creation of ultrabroadband superluminescent light-emitting diodes using multiple quantum-dot layer structure by rapid thermal-annealing process is reported. The device exhibits a 3 dB emission bandwidth of 146 nm centered at 984 mm with cw output power as high as 15 mW at room temperature corresponding to an extremely small coherence length of 6.6 mu m. (C) 2008 Optical Society of America.
Resumo:
A detailed study on analyzing the crosstalk in a wavelength division multiplexed fiber laser sensor array system based on a digital phase generated carrier interferometric interrogation scheme is reported. The crosstalk effects induced by the limited optical channel isolation of a dense wavelength division demultiplexer (DWDM) are presented, and the necessary channel isolation to keep the crosstalk negligible to the output signal was calculated via Bessel function expansion and demonstrated by a two serial fiber laser sensors system. Finally, a three-element fiber laser sensor array system with a 50-dB channel-isolation DWDM was built up. Experimental results demonstrated that there was no measurable crosstalk between the output channels.
Resumo:
Variations in optical spectrum and modulation band-width of a modulated Fabry-Perot (FP) semiconductor laser subject to the external light injection from another FP Laser is investigated in this paper. Optimal wavelength matching conditions for two FP lasers are discussed. A series of experiments show that two FP lasers should have a central wavelength overlapping and a mode spacing difference of several gigahertz. Under these conditions both the magnitude and phase frequency responses can be improved significantly.
Resumo:
A triplexer is fabricated based on SOI arrayed waveguide gratings (AWGs). Three wavelengths of the triplexer operate at different diffraction orders of an arrayed waveguide grating. The signals of 1490 nm and 1550 nm, which are input from central input waveguide of an AWG, are demultiplexed and the signal of 1310 nm, which is input from central output waveguide of an AWG, is uploaded. The tested results show that the downloaded and uploaded signals have flat-top response. The insertion loss is 9 dB on chip, the nonadjacent crosstalk is less than -30 dB for 1490 nm and 1301 nm, and is less than -25 dB for 1550 nm, the 3 dB bandwidth equates that of the input light source.
Resumo:
Organic light emitting diodes employing magnesium doped electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride (Mg: PTCDA) as electron injection layer and silver as cathode were demonstrated. As compared to Mg: Ag cathode, the combination of the Mg: PTCDA layer and silver provided enhanced electron injection into tris (8-quinolinolato) aluminium. The device with 1: 2 Mg: PTCDA and Ag showed an increase of about 12% in the maximum current efficiency, mainly due to the improved hole-electron balance, and an increase of about 28% in the maximum power efficiency, as compared to the control device using Mg: Ag cathode. The properties of Mg: PTCDA composites were studied as well.
Resumo:
The authors report the optical characteristics of GaSb/InAs/GaAs self-assembled heterojunction quantum dots (QDs). With increasing GaSb deposition, the room temperature emission wavelength can be extended to 1.56 mu m. The photoluminescence mechanism is considered to be a type-II transition with electrons confined in InAs and holes in GaSb.(C) 2008 American Institute of Physics.
Resumo:
Bright organic electroluminescent devices are developed using a metal-doped organic layer intervening between the cathode and the emitting layer. The typical device structure is a glass substrate/indium-tin oxide (ITO)/copper phthalocyanine (CuPc)/NN'-bis-(1-naphthl)-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/Tris(8-quinolinolato) aluminum(Alq(3))/Mg-doped CuPc/Ag. At a driving voltage of 11 V, the device with a layer of Mg-doped CuPc (1:2 in weight) shows a brightness of 4312 cd/m(2) and a current efficiency of 2.52 cd/A, while the reference device exhibits 514 cd/m(2) and 1.25 cd/A.
Resumo:
Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS. (c) 2008 American Institute of Physics.
Resumo:
We fabricated a phosphor-conversion white light using an InGaN laser diode that emits 405 nm near-ultraviolet (n-UV) light and phosphors that emit in the blue and yellow regions when excited by the n-UV and blue light, respectively.The relationship of the luminous flux and the luminous efficacy of the white light with injection current was discussed. The luminous flux increased linearly with increasing current above the threshold of the laser diode, and at 80 mA injection current, the luminous flux and luminous efficacy were estimated to be 5.7 lm and 13 lm/w, respectively. The shift of the Commission International de I'Eclairage coordinates, color temperature, and color rendering index with current are very slight and negligible, which indicates that the blue and the yellow phosphors have an excellent stability and a highly stable white light can be obtained by this way. (c) 2008 American Institute of Physics.
Resumo:
Polarization-resolved edge-emitting electroluminescence (EL) studies of InGaN/GaN MQWs of wavelengths from near-UV (390 nm) to blue (468 nm) light-emitting diodes (LEDs) are performed. Although the TE mode is dominant in all the samples of InGaN/GaN MQW LEDs, an obvious difference of light polarization properties is found in the InGaN/GaN MQW LEDs with different wavelengths. The polarization degree decreases from 52.4% to 26.9% when light wavelength increases. Analyses of band structures of InGaN/GaN quantum wells and luminescence properties of quantum dots imply that quantum-dot-like behavior is the dominant reason for the low luminescence polarization degree of blue LEDs, and the high luminescence polarization degree of UV LEDs mainly comes from QW confinement and the strain effect. Therefore, indium induced carrier confinement (quantum-dot-like behavior) might play a major role in the polarization degree change of InGaN/GaN MQW LEDs from near violet to blue.
Resumo:
This paper presents a new concept of frequency coherence in the frequency-time domain to describe the field correlations between two lightwaves with different frequencies. The coherence properties of the modulated beams from lightwave sources with different spectral widths and the modes of Fabry-Wrot (FP) laser are investigated. It is shown that the lightwave and its corresponding sidebands produced by the optical intensity modulation are perfectly coherent. The measured linewidth of the beat signal is narrow and almost identical no matter how wide the spectral width of the beam is. The frequency spacing of the adjacent FP modes is beyond the operation frequency range of the measurement instruments. In our experiment, optical heterodyne technique is used to investigate the frequency coherence of the modes of FP laser by means of the frequency shift induced by the optical intensity modulation. Experiments show that the FP modes are partially coherent and the mode spacing is relatively fixed even when the wavelength changes with ambient temperature, bias current and other factors. Therefore, it is possible to generate stable and narrow-linewidth signals at frequencies corresponding to several mode intervals of the laser.
Resumo:
A phosphor-conversion white light using an InGaN laser diode that emits 405 nm near-ultraviolet (n-UV) light and phosphors that emit in the red/green/blue region when excited by the n-UV light was fabricated. The relationship of the luminous flux and the luminous efficacy of the white light with injection current were discussed. Based on the evaluation method for luminous efficacy of light sources established by the Commission International de I'Eclairage (CIE) and the phosphor used in this experiment, a theoretical analysis of the experiment results and the maximum luminous efficacy of this white light fabrication method were also presented.