163 resultados para Ruthenium.
Resumo:
A family of supramolecular polymers was prepared via Cd2+-directed self-assembly polymerization of his (2,2':6',2 ''-terpyridine)-based ligand monomers, using oligofluorenes and triphenylamine as bridges under mild conditions. The polymers were fully characterized using thermogravimetric analysis, inherent viscosity, electrochemical measurements, UV-visible spectroscopy, photoluminescence (PL) and electroluminescence (EL). Polymers with oligofluorenes as spacers exhibited blue emission (434-442 nm) in dimethyl acetamide (DMAc) solution, while polymers with triphenylamine as spacer presented an emission peak at 494 nn in DMAc solution. Complexation polymerization of bis(2,2':6',2 ''-terpyridine)-based ligand monomers with cadmium(II) improved fluorescence quantum yields dramatically, and the film PL quantum yields of these polymers were about 0.38-0.54. Single-layer light-emitting diodes were fabricated with the configuration indium tin oxide (ITO)/polymer/Ca/Al; the EL showed green emission and the onset voltages of the devices were 8-11 V.
Resumo:
A new technique for investigating drug-protein binding was developed employing capillary electrophoresis (CE) coupled with tris(2,2'-bipyridyl) ruthenium(II) [Ru(bPY)(3)(2+)] electrochemiluminescence (ECL) (CE-ECL) detection after equilibrium dialysis. Three basic drugs, namely pridinol, procyclidine and its analogue trihexyphenidyl, were successfully separated by capillary zone electrophoresis with end-column Ru(bPY)(3)(2+) ECL detection. The relative drug binding to human serum albumin (HSA) for each single drug as well'as for the three drugs binding simultaneously was calculated. It was found that the three antiparkinsonian drugs compete for the same binding site on HSA. This work demonstrated that Ru(bPY)(3)(2+) CE-ECL can be a suitable technique for studying drug-protein binding.
Resumo:
Fast analysis of ofloxacin and lidocaine, as bactericide and analgesic or anesthetics, is of clinic importance for understanding the patient's medical process. This paper presented a high throughput, simple analysis method of lidocaine and ofloxacin by capillary electrophoresis coupled with electrochemiluminescence (ECL) using porous etched joint. To shorten the analysis time and to improve the analytical performance, a capillary with 10 cm in length was used as the separation channel. The cyclic voltammograms of Ru(bpy)(3)(2+) with different capillary length at same field strength showed that the porous etched joint eliminated the effect of electrophoretic current on the ECL detection. Following micro total analysis systems (muTAS), some advantages of which this approach has, the fabrication of channel in chip was not needed. Compared with capillary electrophoresis with 40-cm-long capillary, the high sample throughput and low zone broadening may be the main advantage of the present system. Under optimal condition, the detection limits of lidocaine and ofloxacin based on peak height were 3.0 x 10(-8) and 5.0 x 10(-7) mot L-1 and a 60 h(-1) of sampling frequency was obtained.
Resumo:
In this article, an antibiotic, lincomycin was determined in the urine sample by microchip capillary electrophoresis (CE) with integrated indium tin oxide (ITO) working electrode based on electrochemiluminescence (ECL) detection. This microchip CE-ECL system can be used for the rapid analysis of lincomycin within 40 s. Under the optimized conditions, the linear range was obtained from 5 to 100 muM with correlation coefficient of 0.998. The limit of detection (LOD) of 3.1 muM was obtained for lincomycin in the standard solution. We also applied this method to analyzing lincomycin in the urine matrix. The limit of detection of 9.0 muM was obtained. This method can determine lincomycin in the urine sample without pretreatment, which demonstrated that it is a promising method of detection of lincomycin in clinical and pharmaceutical area.
Resumo:
A capillary zone electrophoresis with end-column electrochemiluminescence (ECL) detector was described for the determination of benzhexol hydrochloride. The detection was based on the tris(2,2'-bypyridine)ruthenium(II) [Ru(bpy)(3)(2+)] ECL reaction with the analyte. Electrophoresis was performed using a 25 mum i.d. uncoated capillary. 10 mM sodium phosphate buffer (pH=8.0) was used as the running buffer. The solution in the detection cell was 80 mM sodium phosphate (pH=8.0) and 5 mM)21 Ru(bpy)(3)(2+). A linear calibration curve of three-orders of magnitude was obtained (with a correlation coefficient of > 0.999) from 1.0X10(-8) to 1.0X10(-5) M and the limit of detection was 6.7 X 10(-9) M (S/N= 3). This just provides an easy and sensitive method to determine the active ingredient in pharmaceutical formulations.
Resumo:
提出了基于毛细管电泳芯片的电化学和电化学发光同时检测技术.在此芯片系统中,三联吡啶钌Ru(bpy)2+3[Tris(2,2'-bypiridyl) ruthenium(Ⅱ)]既作为电化学发光(ECL)检测所需的发光试剂与被分析物反应,生成激发态的Ru(bpy)2+3*,从而产生电化学发光信号;又具有催化作用参与电极表面的电化学反应,从而得到增强的电流响应.电化学信号与电化学发光信号同时产生并被分别纪录,从而实现了电化学和电化学发光的同时检测.这种芯片由两部分构成,分别是带有分离和进样通道的聚二甲基硅氧烷(PDMS)层和ITO(Indium tin oxide)工作电极底片.PDMS层与ITO电极底片采用可逆键合的方式组成芯片,该芯片大大简化了操作过程,提高了发光信号的采集效率.在整个实验过程中,ITO电极表现出良好的稳定性,可长时间多次使用.选用山莨菪碱和氧氟沙星两种药物分子作为被分析物,对芯片系统性能进行了表征.
Resumo:
The electrochemistry and electrogenerated chemiluminescence (ECL) of ruthenium(II) tris(bipyridine) (Ru(bpy)(3)(2+)) ion-exchanged in carbon nanotube (CNT)/Nafion composite films were investigated with tripropylamine (TPA) as a coreactant at a glassy carbon (GC) electrode. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved sensitivity, reactivity, and long-term stability. Ru(bpy)(3)(2+) could be strongly incorporated into Nafion film, but the rate of charge transfer was relative slow and its stability was also problematic. The interfusion of CNT in Nafion resulted in a high peak current of Ru(bpy)(3)(2+) and high ECL intensity. The results indicated that the composite film had more open structures and a larger surface area allowing faster diffusion of Ru(bpy)(3)(2+) and that the CNT could adsorb Ru(bpy)(3)(2+) and also acted as conducting pathways to connect Ru(bpy)(3)(2+) sites to the electrode. In the present work, the sensitivity of the ECL system at the CNT/Nafion film-modified electrodes was more than 2 orders of magnitude higher than that observed at a silica/Nafion composite film-modified electrode and 3 orders of magnitude higher than that at pure Nafion films.
Resumo:
The electrochemical and electrogenerated chemiluminescence of Ru(bpy)(3)(2+) immobilized in {clay/Ru(bpy)(3)(2+)}(n) multilayer films by layer-by-layer assembly were investigated. The stable multilayer films of clay and Ru(bpy)(3)(2+) were assembled by alternate adsorption of negatively charged clay platelets and positively charged Ru(bpy)(3)(2+) from their aqueous dispersions. UV-vis spectroscopy, quartz crystal microbalance (QCM), cyclic voltammetry, and electrogenerated chemiluminescence (ECL) were used to monitor the immobilization of Ru( bpy)(3)(2+) and the regular growth of the {clay/Ru( bpy)(3)(2+)}(n) multilayer films. The multilayer films modified electrode was used for the ECL detection of tripropylamine ( TPA) and oxalate. The proposed novel immobilized method exhibited good stability, reproducibility and high sensitivity for the determination of TPA and oxalate, which mainly resulted from the contributing of clay nanoparticles with appreciable surface area, special structural features and unusual intercalation properties.
Resumo:
A novel room temperature ionic liquid (RTIL) has been prepared containing a cyclic hexaalkylguanidinium cation. The selective oxidation of a series of substituted benzyl alcohols has been carried out in it, with sodium hypochlorite as the oxidant. The RTIL acts as both phase transfer catalyst (PTC) and solvent. The ionic liquid could be recycled after extraction of the benzaldehyde product with ether.
Resumo:
The complexes [Cu(dnpb)(DPEphos)](+)(X-) (dnpb and DPEphos are 2,9-di-n-butyl-1,10-phenanthroline and bis[2-(diphenyl-phosphino)phenyl]ether, respectively, and X- is BF4-, ClO4-, or PF6-) can form high quality films with photoluminescence quantum yields of up to 71 +/- 7%. Their electroluminescent properties are studied using the device-structure indium tin oxide (ITO)/complex/metal cathiode. The devices emit green light efficiently, with an emission maximum of 523 nm, and work in the mode of light-emitting electrochemical cells. The response time of the devices greatly depends on the driving voltage, the counterions, and the thickness of the complex film. After pre-biasing at 25 V for 40 s, the devices turn on instantly, with a turn-on voltage of ca. 2.9 V. A current efficiency of 56 cd A(-1) and an external quantum efficiency of 16% are realised with Al as the cathode. Using a low-work-function metal as the cathode can significantly enhance the brightness of the device almost without affecting the turn-on voltage and current efficiency. With a Ca cathode, a brightness of 150 cd m(-2) at 6 V and 4100 cd m(-2) at 25 V is demonstrated. The electroluminescent performance of these types of complexes is among the best so far for transition metal complexes with counterions.
Resumo:
The facile synthesis of the novel platinum nanoparticles/Eastman AQ55D/ruthenium(II) tris( bipyridine) (PtNPs/ AQ/Ru(bpy)(3)(2+)) colloidal material for ultrasensitive ECL solid-state sensors was reported for the first time. The cation ion-exchanger AQ was used not only to immobilize ECL active species Ru(bpy)(3)(2+) but also as the dispersant of PtNPs. Colloidal characterization was accomplished by transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), and UV-vis spectroscopy. Directly coating the as-prepared colloid on the surface of a glassy carbon electrode produces an electrochemiluminescence (ECL) sensor. The electronic conductivity and electroactivity of PtNPs in composite film made the sensor exhibit faster electron transfer, higher ECL intensity of Ru(bpy)(3)(2+), and a shorter equilibration time than Ru(bpy)(3)(2+) immobilized in pure AQ film. Furthermore, it was demonstrated that the combination of PtNPs and permselective cation exchanger made the sensor exhibite excellent ECL behavior and stability and a very low limit of detection (1 x 10(-15) M) of tripropylamine with application prospects in bioanalysis. This method was very simple, effective, and low cost.
Resumo:
CE/tris(2,2-bipyridyl) ruthenium(ll) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL), CEECL, with an ionic liquid (IL) detection system was established for the determination of bioactive constituents in Chinese traditional medicine opium poppy which contain large amounts of coexistent substances. A minimal sample pretreatment which involves a one-step extraction approach avoids both sample loss and environmental pollution. As the nearby hydroxyl groups in some alkaloid such as morphine may react with borate to form complexes and IL, as a high-conductivity additive in running buffer, could cause an enhanced field-amplified effect of electrokinetic injection. Running buffer containing 25 mM borax-8 mM 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF(4)) IL (pH 9.18) was used which resulted in significant changes in separation selectivity and obvious enhancement in ECL intensities for those alkaloids with similar structures. Sensitive detection could be achieved when the distance between the Pt working electrode and the outlet of separation capillary was set at 150 mu m and the stainless steel cannula was fixed approximately 1 cm away from the outlet of the capillary. Quantitative analysis of four alkaloids was achieved at a detection voltage of 1.2 V and a separation voltage of 15 kV in less than 7 min.
Resumo:
An effective electrogenerated chemiluminescence (ECL) sensor was developed by coimmobilization of the Ru(bpy)(2)(3+)-doped silica (RuDS) nanoparticles and carbon nanotubes (CNTs) on glassy carbon electrode through hydrophobic interaction. The uniform RuDS nanoparticles were prepared by a water-in-oil (W/O) microemulsion method and Ru(bpy)(3)(2+) doped inside could still maintain its high ECL efficiency. With such unique immobilization method, a great deal of Ru(bpy)(3)(2+) was immobilized three-dimensionally on the electrode , which could greatly enhance the ECL response and result in the increased sensitivity. On the other hand, CNTs played dual roles as matrix to immobilize RuDS nanoparticles and promoter to accelerate the electron transfer between Ru(bpy)(3)(2+) and the electrode. The as-prepared ECL sensor displayed good sensitivity and stability.
Resumo:
A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.
Resumo:
The synthesis and characterization of catalysts based on bimetallic materials, Pt-Fe supported on multi-walled carbon nanotubes (MWNTs) for methanol electrooxidation is reported here. The catalyst was prepared by a spray-cooling process and characterized by TEM, EDS, ICP and XRD. The electrocatalytic properties of the Pt-Fe/MWNTs electrode for methanol oxidation have been investigated by cyclic voltammetry and chronoamperometry. It presented higher electrocatalytic activity and stability than a comparative Pt/ MWNTs catalyst. This may be attributed to the addition of Fe which leads to the small average particle size and high utilization of Pt in the Pt-Fe/MWNTs catalyst. The results imply that the Pt Fe/MWNTs composite has good potential applications in fuel cells.