206 resultados para Porous coatings
Resumo:
The photoluminescence (PL) response of porous silicon is usually in the form of a single broad peak. Recently, however, PL response with two peaks has been reported. Here we report the observation of multiple peaks in the PL spectrum of porous silicon. A simple modeling of the line shape indicates that four peaks exist within the response curve, and analysis suggests that the PL of porous silicon is derived from quantum confinement in the silicon crystallites. The line shapes can be due to either minibands within the conduction and valence bands or crystallite size variation or a combination of the two.
Resumo:
A theoretical model for the electronic structure of porous Si is presented. Three geometries of porous Si (wire with square cross section, pore with square cross section, and pore with circular cross section) along both the [001] and [110] directions are considered. It is found that the confinement geometry affects decisively the ordering of conduction-band states. Due to the quantum confinement effect, there is a mixing between the bulk X and GAMMA states, resulting in finite optical transition matrix elements, but smaller than the usual direct transition matrix elements by a factor of 10(-3). We found that the strengths of optical transitions are sensitive to the geometry of the structure. For (001) porous Si the structure with circular pores has much stronger optical transitions compared to the other two structures and it may play an important role in the observed luminescence. For this structure the energy difference between the direct and the indirect conduction-band minima is very small. Thus it is possible to observe photoluminescence from the indirect minimum at room temperature. For (110) porous Si of similar size of cross section the energy gap is smaller than that of (001) porous Si. The optical transitions for all three structures of (110) porous Si tend to be much stronger along the axis than perpendicular to the axis.
Resumo:
Photoluminescence studies on porous silicon show that there are luminescence centers present in the surface states. By taking photoluminescence spectra of porous silicon with respect to temperature, a distinct peak can be observed in the temperature range 100-150 K. Both linear and nonlinear relationships were observed between excitation laser power and the photoluminescence intensity within this temperature range. In addition, there was a tendency for the photoluminescence peak to red shift at low temperature as well as at low excitation power. This is interpreted as indicating that the lower energy transition becomes dominant at low temperature and excitation power. The presence of these luminescence centers can be explained in terms of porous silicon as a mixture of silicon clusters and wires in which quantum confinement along with surface passivation would cause a mixing of Gamma and X band structure between the surface states and the bulk. This mixing would allow the formation of luminescence centers.
Resumo:
Surface plasmon enhanced antireflection coatings for GaAs solar cells have been designed theoretically. The reflectance of double-layer antireflection coatings (ARCs) with different suspensions of Ag particles is calculated as a function of the wavelength according to the optical interference matrix and the Mie theory. The mean dielectric concept was adopted in the simulations. A significant reduction of reflectance in the spectral region from 300 to 400 nm was found to be beneficial for the design of ARCs. A new SiO_2/Ag-ZnS double-layer coating with better antireflection ability can be achieved if the particle volume fraction in ZnS is 1%-2%.
Resumo:
Natural surface coatings sampled (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River, China were employed to investigate the similarities and difference in fractions of heavy metals (Fe, Mn, Zn, Cu, Pb, and Cd) between NSCSs and SSs using the modified sequential extraction procedure (MSEP). The results show that the differences between NSCSs and SSs in Fe fractions were insignificant and Fe was dominantly present as residual phase (76.22% for NSCSs and 80.88% for SSs) and Fe-oxides phase (20.33% for NSCSs and 16.15% for SSs). Significant variation of Mn distribution patterns between NSCSs and SSs was observed with Mn in NSCSs mainly present in Mn-oxides phase (48.27%) and that in SSs present as residual phase (45.44%). Zn, Cu, Pb and Cd were found dominantly in residual fractions (>48%), and next in solid oxides/hydroxides for Zn, Pb and Cd and in easily oxidizable solids/compounds form for Cu, respectively. The heavy metal distribution pattern implied that Fe/Mn oxides both in NSCSs and SSs were more important sinks for binding and adsorption of Zn, Pb and Cd than organic matter (OM), and inversely, higher affinity of Cu to OM than Fe/Mn oxides in NSCSs and SSs was obtained. Meanwhile, it was found that the distributions of heavy metals in NSCSs and SSs were similar to each other and the pseudo-total concentrations of Zn, Cu, Pb and Cd in NSCSs were greater than those in SSs, highlighting the more importance for NSCSs than SSs in controlling behaviours of heavy metals in aquatic environments.
Resumo:
A new technique to fabricate silicon condenser microphone is presented. The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p~+-doping silicon of approximately 15μm thickness for the stiff backplate. The measured sensitivity of the microphone fabricated with this technique is in the range from -45dB (5.6mV/Pa) to -55dB (1.78mV/Pa) under the frequency from 500Hz to 10kHz, and shows a gradual increase at high frequency. The cut-off frequency is above 20kHz.
Resumo:
A porous InAlAs structure was first obtained by electrochemical etching. Nano-pore arrays were formed when the In0.52Al0.48As membrane was anodized at constant voltages in an HF aqueous solution. These self-assembled structures showed evident blue-shift photoluminescence emissions. While a quantum size effect alone underestimates the blue-shift energy for a sample with a relatively large average pore wall thickness, a novel effect caused by the asymmetric etching is proposed to account for this phenomenon. The results inferred from the x-ray double crystal diffraction are in good agreement with the experimental data.