313 resultados para Polymer Molecular-crowding Effects
Resumo:
Post-growth rapid thermal annealing has been performed with In(Ga)As quantum dots (QDs) at different strain statuses. It is confirmed that the strain-enhanced interdiffusion decreases the inhomogeneous size distribution. The preferential lateral interdiffusion of QDs during annealing was observed. we attribute it to the naturally anisotropic strain distribution in/around the dots and the saturation of strain difference between the base boundary and the top of the dots. There exist strain-enhanced mechanism and vacancy diffusion enhanced mechanism during the annealing. As to which one dominates the QD interdiffusion depends on the thickness of capping layer and the annealing temperature. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We investigated the effects of concomitant In- and N-incorporation on the photoluminescence (PL) of GaInNAs grown by molecular beam epitaxy. In comparison with the N-free GaInAs epilayer, the PL spectra of the GaInNAs epilayer exhibit an anomalous S-shape temperature dependence of dominant luminescence peak. Through further careful inspection, two PL peaks are clearly discerned and are associated with the interband excitonic recombinations and excitons bound to N-induced isoelectronic impurity states, respectively. By comparing the PL spectra of GaInNAs/ GaAs quantum wells (QWs) with those of In-free GaNAs/GaAs QWs grown under similar conditions, it is found that the concomitant In- and N-incorporation reduces the density of impurities and has an effect to improve the intrinsic optical transition of GaInNAs, but also enhance the N-induced clustering effects. At last, we found that rapid thermal annealing can significantly reduce the density of N-induced impurities. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A step-graded InAlAs buffer layer and an In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistor (MM-HEMT) structures were grown by molecular beam epitaxy on GaAs (001) substrates, and rapid thermal annealing was performed on them in the temperature range 500-800 degreesC for 30 s. The as-grown and annealed samples were investigated with Hall measurements, and 77 K photoluminescence. After rapid thermal annealing, the resistivities of step-graded InAlAs buffer layer structures became high. This can avoid leaky characteristics and parasitic capacitance for MM-HEMT devices. The highest sheet carrier density n(s) and mobility mu for MM-HEMT structures were achieved by annealing at 600 and 650degreesC, respectively. The relative intensities of the transitions between the second electron subband to the first heavy-hole subband and the first electron subband to the first heavy-hole subband in the MM-HEMT InGaAs well layer were compared under different annealing temperatures. (C) 2002 American Institute of Physics.
Resumo:
The effects of annealing time and Si cap layer thickness: on the thermal stability of the Si/SiGe/Si heterostructures deposited by disilane and solid-Ge molecule beam epitaxy were investigated. It is found that in the same strain state of the SiGe layers the annealing time decreases with increasing Si cap layer thickness. This effect is analyzed by a force-balance theory and an equation has been obtained to characterize the relation between the annealing time and the Si cap layer thickness. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs nanostructures on (0 0 1) InP substrate have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). It is found that the morphologies and PL properties of InAs nanostructures depend strongly on the growth condition. For the same buffer layer, elongated InAs quantum wires (QWRs) and no isotropic InAs quantum dots (QDs) can be obtained using different growth conditions. At the same time, for InAs quantum dots, PL spectra also show several emission peaks related to different islands size. Theoretical calculation indicated that there are size quantization effects in InAs islands. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Postgrowth rapid thermal annealing was used to study the relaxation mechanism and optical properties of InGaAs/GaAs self-assembled quantum dots superlattice grown by molecular beam epitaxy. It is found that a significant narrowing of the luminescence linewidth (from 80 to 42 meV) occurs together with about 86 meV blue shift at annealing temperature up to 950 degrees C. Double crystal X-ray diffraction measurements show that the intensity of the satellite diffraction peak, which corresponds to the quantum dots superlattice, decreased with the increasing annealing temperature and disappeared at 750 degrees C, but recovered and increased again at higher annealing temperatures. This behavior can be explained by two competing relaxation mechanisms; interdiffusion and favored migration. The study indicates that a suitable annealing treatment can improve the structural properties of the quantum dots superlattice. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence spectroscopy has been used to investigate self-assembled InAs islands in InAlAs grown on InP(0 0 1) by molecular beam epitaxy, in correlation with transmission electron microscopy. The nominal deposition of 3.6 monolayers of InAs at 470 degrees C achieves the onset stage of coherent island formation. In addition to one strong emission around 0.74 eV, the sample displaces several emission peaks at 0.87, 0.92. 0.98, and 1.04 eV. Fully developed islands that coexist with semi-finished disk islands account for the multipeak emission. These results provide strong evidence of size quantization effects in InAs islands. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Self-organized InAs islands on (001) GaAs grown by molecular beam epitaxy were annealed and characterized with photoluminescence (PL) and transmission electron microscopy (TEM). The PL spectra from the InAs islands demonstrated that annealing resulted in a blueshift in peak energy, a reduction in intensity, and a narrower linewidth in the PL peak. In addition, the TEM analysis revealed the relaxation of strain in some InAs islands with the introduction of the network of 90 degrees dislocations. The correlation between the changes in the PL spectra and the relaxation of strain in InAs islands was discussed. (C) 1998 American Institute of Physics. [S0003-6951(98)01850-6].
Resumo:
Raman scattering, photoluminescence (PL), and nuclear reaction analysis (MA) have been employed to investigate the effects of rapid thermal annealing (RTA) on GaN films grown on sapphire (0001) substrates by gas-source molecular-beam epitaxy, The Raman spectra showed the presence of the E-2 (high) mode of GaN and shift of this mode from 572 to 568 cm(-1) caused by annealing. The results showed that RTA has a significant effect on the strain relaxation caused by the lattice and thermal expansion misfit between the GaN epilayer and the substrate. The PL peak exhibited a blueshift in its energy position and a decrease in the full width at half maximum after annealing, indicating an improvement in the optical quality of the film. Furthermore, a green luminescence appeared after annealing and increased in intensity with increasing annealing time. This effect was attributed to H concentration variation in the GaN film, which was measured by NRA. A high H concentration exists in as-grown GaN, which can neutralize the deep level, and the H-bonded complex dissociates during RTA, This leads to the appearance of a luminescent peak in the PL spectrum. (C) 1998 American Institute of Physics.
Resumo:
InAs layers were grown on GaAs by molecular beam epitaxy (MBE) at substrate temperature 450 and 480 degrees C, and the surface morphology was studied with scanning electron microscopy (SEM). We have observed a high density of hexagonal deep pits for samples grown at 450 degrees C, however, the samples grown at 480 degrees C have smooth surface. The difference of morphology can be explained by different migration of cations which is temperature dependent. Cross-sectional transmission electron microscopy (XTEM) studies showed that the growth temperature also affect the distributions of threading dislocations in InAs layers because the motion of dislocations is kinetically limited at lower temperature. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
High structural and optical quality 1.3 mu m GaInNAs/GaAs quantum well (QW) samples with 42.5% indium content were successfully grown by molecular beam epitaxy. The growth of well layers was monitored by reflection high-energy electron diffraction (RHEED). Room temperature photoluminescence (PL) peak intensity of the GaIn0.425NAs/GaAs (6 nm / 20 nm) 3QW is higher than, and the full width at half maximum (FWHM) is comparable to, that of In0.425GaAs/GaAs 3QW, indicating improved optical quality due to strain compensation effects by introducing N to the high indium content InGaAs epilayer. The measured (004) X-ray rocking curve shows clear satellite peaks and Pendellosung fringes, suggesting high film uniformity and smooth interfaces. The cross sectional TEM measurements further reveal that there are no structural defects in such high indium content QWs. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Properties of GaAs single crystals grown at low temperatures by molecular beam epitaxy (LTMBE GaAs) have been studied. The results shaw that excessive arsenic atoms of about 10(20) cm(-3) exist in LTMBE GaAs in the form of arsenic interstitial couples, and cause the dilation in lattice parameter of LTMBE GaAs, The arsenic interstitial couples will be decomposed, and the excessive arsenic atoms will precipitate during the annealing above 300 degrees C. Arsenic precipitates accumulate in the junctions of epilayers with the increase in the temperature of annealing. The depletion regions caused by arsenic precipitates overlap each other in LTMBE GaAs, taking on the character of high resistivity, and the effects of backgating or sidegating are effectively restrained.
Resumo:
In AlGaAs/InGaAs/GaAs PM-HEMT structures, the characterization of deep centers, the degradation in electrical and optical properties and their effects on electrical performance of the PM-HEMTs have been investigated by DLTS, SIMS, PL and conventional van der Pauw techniques. The experimental results confirm that the deep level centers correlate strongly with the oxygen content in the AlGaAs layer, the PL response of PM-HEMTs, and the electrical performance of the PM-HEMTs. Hydrogen plasma treatment was used to passivate/annihilate these centers, and the effects of hydrogenation were examined.
Resumo:
A model for analyzing the correlation between lattice parameters and point defects in semiconductors has been established. The results of this model for analyzing the substitutes in semiconductors are in accordance with those from Vegard's law and experiments. Based on this model, the lattice strains caused by the antisites, the tetrahedral and octahedral single interstitials, and the interstitial couples are analyzed. The superdilation in lattice parameters of GaAs grown at low temperatures by molecular-beam epitaxy can be interpreted by this model, which is in accordance with the experimental results. This model provides a way of analyzing the stoichiometry in bulk and epitaxial compound semiconductors nondestructively.