133 resultados para Optical characteristics
Resumo:
GaAs/AlGaAs quantum dot arrays with different dot sizes made by different fabrication processes were studied in this work. In comparison with the reference quantum well, photoluminescence (PL) spectra from the samples at low temperature have demonstrated that PL peak positions shift to higher energy side due to quantization confinement effects and the blue-shift increases with decreasing dot size, PL linewidths are broadened and intensities are much reduced. It is also found that wet chemical etching after reactive ion etching can improve optical properties of the quantum dot arrays.
Resumo:
\Si1-yCy alloys with carbon composition of 0.5 at.% were successfully grown on n-Si(100) substrate by solid phase epitaxy recraystallization. The result was presented in this paper. With the help of the SiO2 capping layer, rather uniform carbon profile in amorphous Si layer was obtained by dual-energy implantation. Since ion-flow was small and implantation time was long enough, the emergency of beta-SiC was avoided and the dynamic annealing effect was depressed. The pre-amorphization of the Si substrate increased the fraction of the substitutions carbon and the two-step annealing reduced point defects. As a result, Si1-yCy alloys with high quality was recrystallized on Si substrate.
Resumo:
We report on the fabrication of circular waveguide photodetectors with a response near 1.3 mu m wavelength using SiGe/Si multiple quantum wells. The quantum efficiency of the circular waveguide photodetector is improved when compared with that of the rib waveguide photodetector in the same wavelength at 1.3 mu m The frequency response of the photodetectors is simulated. The emciency-bandwidth product of the circular waveguide photodetectors is improved correspondingly. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
In this contribution we report the research and development of 1.55 mu m InGaAsP/InP gain-coupled DFB laser with an improved injection-carrier induced grating and of high performance 1.3 mu m and 1.55 mu m InGaAsP/InP FP and DFB lasers for communications. Long wavelength strained MQW laser diodes with a very low threshold current (7-10 mA) have been fabricated. Low pressure MOVPE technology has been employed for the preparation of the layered structure. A novel gain-coupled DFB laser structure with an improved injection-carrier modulated grating has been proposed and fabricated. The laser structures have been prepared by hybrid growth of MOVPE and LPE techniques and reasonably good characteristics have been achieved for resultant lasers. High performance 1.3 mu m and 1.55 mu m InGaAsP/InP DFB lasers have successfully been developed for CATV and trunk line optical fiber communication.
Resumo:
We analyze theoretically the polarization characteristics of polarization maintaining fiber and study the basic measurement principles of beat length and polarization extinction ratio of this kind of optical fiber. According, to the dependence of the phase difference between two orthogonally polarized modes (denoted Os HE(11)(x) and HE(11)(y)) transmitted in the polarization maintaining fiber on the light wavelength, we propose the wavelength-sweeping modulation method to measure the beat length and the model birefringence. Based on this technique, the hew length and polarization extinction ratio of the PANDA polarization maintaining fibers (PMFs) (provided by Yangtze Optical Fiber and Cable Company, Wuhan, China) were investigated in detail. Experimental results show good consistent with the theoretical ones. We find that this method shows high measurement precision with the advantages of clear measurement principle and easy to operate. 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 1466-1469, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25244
Resumo:
Bessel beam can overcome the limitation of the Rayleigh range of Gaussian beam with the same spot size propagation without any spreading due to diffraction, which is considered as an useful function in guiding particles in the next generation of optical tweezers. The mathematical description of the Bessel beam generated by an axicon is usually based on the Fresnel diffraction integral theory. In this paper, we deduce another type of analytic expression suitable for describing the beam profile generated from the axicon illuminated by the Gaussian beam based on the interferential theory. Compared with the Fresnel diffraction integral theory, this theory does not use much approximation in the process of mathematical analysis. According to the derived expression, the beam intensity profiles at any positions behind the axicon can be calculated not just restricted inside the cross region as the Fresnel diffraction integral theory gives. The experiments prove that the theoretical results fit the experimental results very well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. The simultaneous determinations of both MB and NMB were explored by flow injection SOWG spectrophotometric analysis and artificial neural networks (ANNs) for the first time. Concentrations of MB and NMB were estimated simultaneously with the ANNs. Results obtained with SOWG were compared with those got by conventional UV-visible spectrophotometry. (C) 2003 Elsevier Science B.V All rights reserved.
Resumo:
Theoretical researches were performed on the CaFe2O4-type binary rare earth oxides AR(2)O(4) (A = Ca, Sr, Ba; R = rare earths) by using chemical bond theory of dielectric description. The chemical bond properties of these crystals were explored, and then the thermal expansion property and compressibility were studied. The theoretical values of linear thermal expansion coefficient (LTEC) and bulk modulus were presented. The calculations revealed that the LTECs and the bulk moduli do have linear relationship with the ionic radii of the rare earths. In the cases of Sc and Y, both the LTEC and bulk modulus values are larger than the lanthanide series. We attribute this to the difference in the electronic configuration between Sc (Y) and lanthanide series. For SrY2O4 and BaY2O4 crystals, the theoretical values of LTEC and bulk modulus agree well with experimental ones.
Resumo:
The crystallization detail of polyethylene (PE) has been scarcely studied via in-situ approach since it is an extremely fast process. In this work, optical microscopy is used to investigate crystallization details and characteristics of windmill-like polyethylene crystals. It has been shown that the straight edges of the petals appear firstly and grow in pairs from their central junctions, which subsequently induce the surrounding domains in between each pairs of petals to nucleate and crystallize into twisted lamellar overgrowths. The remaining terrace-stacked lamellae which form curved edges of the petals start to develop only after the straight edges of the petals together with the twisted lamellar overgrowths have completed their growth. It is confirmed that the preferential growth direction of these petals are along crystallographic [113] axis, which has an angle of 65, with the typical direction along b-axis adopted also by the twisted lamellar overgrowths.
Resumo:
A sol-gel approach has been developed to prepare polyimide-TiO2, hybrid films fi om soluble polyimides and a modified titanium precursor. The rate of the hydrolysis reaction of titanium alkoxide can be controlled by using acetic acid as a modifier. FTIR and XPS indicated that TiO2, particles were well distributed in polyimide matrixes with particle size small per than 60 nm. Polyimide hybrid films having the TiO2, component less than or equal to 10% exhibited high thermal stability, high optical transparency and good mechanical properties and possessed higher dielectric constants than correspondingly polyimides. (C) 2000 Society of Chemical Industry.
Resumo:
The spontaneous emission properties of a single layer organic film in plane optical microcavities were studied. Optical microcavity was formed by a Tris(8-quinolinolato) aluminium (Alq) film sandwiched between a distributed Bragg reflector (DBR) and a Ag metallic reflector. Two kinds of microcavities were devised by using a different DBR structure. Compared with a Alq film, significantly spectral narrowing and intensity enhancement was observed in the two microcavities, which is attributed to the microcavity effect. The spectra characteristics of the two microcavities showed that the structure of DBR has much influence on the emission properties of a microcavity. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
From the chemical bond viewpoint, LiB3O5 (LBO) crystal has been studied by using the bond valence theory of complex crystals. Chemical bond parameters and linear and nonlinear optical (NLO) properties of each type of constituent chemical bonds are quantitatively determined. Because of the different crystal structure characteristics of LBO from those of beta-BaB2O4 (BBO), the two anionic groups, (B3O7)(5-) in LBO and (B3O6)(3-) in BBO, play different roles in contributions to their own total NLO tensor coefficients of LBO and BBO, respectively. By comparison, we find that planar (B3O6)(3-) groups are the ideal structure model, leading to little cancellation of contributions of each kind of bond in these groups, and this gives us a useful guide to design new NLO materials in the future.
Resumo:
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. Effect of pH on adsorption on MB and NMB was investigated. Binding rate constant analysis showed that both MB and NMB on bare SOWG demonstrates larger association constants than those on ODS-SOWG. Interactions of NIB and NMB on bare SOWG and ODS-SOWG were analyzed by molecular mechanics calculation method. The binding energy change was in the following order: ENMB-bare > EMB-bare > ENMB-ODS > EMB-ODS. (c) 2004 Elsevier B.V. All rights reserved.