164 resultados para Nonword repetition
Resumo:
We have demonstrated an efficient and compact passively Q-switched and mode-locked (QML) 1064 nm Nd:YVO4 laser by using a low temperature grown GaAs (LT-GaAs) saturable absorber as well as an output coupler. Stable QML with envelope duration as short as 10 ns and Q-switched repetition rate of 36 kHz was obtained. It is the shortest envelope duration as far as we know, and it is so short that it can be used as Q-switching pulses directly. At 6.9 W of the incident pump power, average output power of 1.24 W was achieved and the corresponding peak power and energy of a single Q-switched pulse were 3.44 kW and 34.4 mu J, respectively. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 780 MHz. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Simultaneous Q-switching and mode-locking (QML) is accomplished in a diode-pumped Nd:YAG laser using low-temperature GaAs (LT-GaAs) as the saturable absorber, which also acts as an output coupler at the same time. The repetition rate of the Q-switched envelope increased from 25 to 40 kHz as the pump power increased from 2.2 to 6.9 W. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 714 MHz. A maximum average output power of 770 mW was obtained. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
In this work, a novel light source of tandem InGaAsP/InGaAsP multiple quantum well electroabsoption modulator( EAM ) monolithically integrated with distributed feedback laser is fabricated by ultra-low-pressure ( 22 x 10(2) Pa ) selective area growth metal-organic chemical vapor diposition technique. Superior device performances have been obtained, such as low threshold current of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3dB bandwidth in EAM part is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained due to the gate operation effect of tandem EAMs.
Resumo:
We report the experimental results of a mode-locked diode-end-pumped Nd:YAG laser with a semiconductor saturable absorber mirror (SESAM) from which we achieved a 10 ps pulse duration at 150 MHz repetition rate. The SESAM was grown by metal organic chemical vapour deposition at low temperature. The recovery time was measured to be 0.5 ps, indicating the potential pulse compression to sub-picoseconds.
Resumo:
A passively Q-switched Yb: YAG microchip laser has been constructed by using a doped GaAs as the saturable absorber as well as the output coupler. At 13.5 W of pump power the device produces high-quality 3.4 muJ 52 ns pulses at 1030nm with a pulse repetition rate of 7.8kHz in a TEM00-mode.
Resumo:
By optimizing the molecule beam epitaxy growth condition, the quality of quantum cascade (QC) material has greatly been improved. The spectrum of double x-ray diffraction indicates that the interface between the constituent layers is very smooth, the lattice mismatch between the epilayer and the substrate is less than 0.1%, and the periodicity fluctuation of the active region is not more than 4.2%. The QC laser with the emission wavelength of about 5.1 mum is operated at the threshold of 0.73 kA/cm(2) at liquid nitrogen temperature with the repetition rate of 10kHz and at a duty cycle of 1%. Meanwhile, the performance of the laser can be improved with suitable post process techniques such as the metallic ohmic contact technology.
Resumo:
We report an end-pumped and passive mode-locking all-solid-state laser. The laser consists of a Nd:GdVO4 crystal and a linear resonator with a semiconductor saturable absorber mirror that yield mode locking. We achieved stable continuous-wave mode locking with an 8-ps pulse duration at a 154-MHz repetition rate. The average output power was 600 mW with 4 W of pump power. To our knowledge this is the first report of the use of a Nd:GdVO4 crystal for mode locking with a semiconductor saturable absorber mirror. (C) 2003 Optical Society of America.
Resumo:
Double X-ray diffraction has been used to investigate InGaAs/InAlAs quantum cascade (QC) laser grown on InP substrate by molecule beam epitaxy, by means of which, excellent lattice matching, the interface smoothness, the uniformity of the thickness and the composition of the epilayer are disclosed. What is more, these results are in good agreement with designed value. The largest lattice mismatch is within 0.18% and the intersubband absorption wavelength between two quantized energy levels is achieved at about lambda = 5.1 mum at room temperature. At 77 K, the threshold density of the QC laser is less than 2.6 kA/cm(2) when the repetition rate is 5 kHz and the duty cycle is 1%. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A novel device of tandem multiple quantum wells (MQWs) electroabsorption modulators (EAMs) monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 mbar) selective area guowth (SAG) MOCVD technique. Experimental results exhibit superior device characteristics with low threshold of 19 mX output light power of 4.5 mW and over 20 dB extinction ratio when coupled into a single mode Fiber. Moreover, over 10 GHz modulation bandwidth is developed with a driving voltage of 2 V. Using I this sinusoidal voltage driven integrated device, 10GHz repetition rate pulse with a width of 13.7 ps without any compression elements is obtained.
Resumo:
A low-threshold passively continuous-wave (CW) mode-locked Nd:YVO4 solid-state laser was demonstrated by use of a semiconductor saturable absorber mirror (SESAM). The threshold for continuous-wave mode-locked is relatively low, about 2.15 W. The maximum average output power was 2.12 W and the optical to optical conversion efficiency was about 32%. The pulse width was about 15 ps with the repetition rate of 105 MHz. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
High efficiency, TEM00 mode, high repetition rate laser pumped by 887 nm is reported. 20.1 W output laser emitting at 1064 nm is achieved in a 0.3 at % Nd-doped Nd:YVO4, which absorbs pumping light of 30.7 W at 887 nm. The opto-optic efficiency and the slope efficiency are 65.5 and 88.5%, respectively. The stable Q-switching operation worked well at 100 kHz and the beam quality is near diffraction-limit with M-2 factor measured as M-2 approximate to 1.2. And the pulse waveform is analyzed in this paper.
Resumo:
We report a LD side-pumped fundamental-mode (Mx(2) = 1.35 and My(2) = 1.27) passive Q-switched and mode-locked Nd:YAG laser based on a semiconductor saturable absorber mirror (SESAM). At a pump current of 12.5 A, the average output power of 5.68 W with 80 kHz repetition rate and 2 mu s pulse width of the Q-switched envelope was generated. The repetition rate of the mode-locked pulse within the Q-switched envelope of 88 MHz was achieved.
Resumo:
We demonstrate a harmonic mode-locked ytterbium-doped fibre ring laser, which consists of a polarization-sensitive isolator, two polarization controllers, two 976 nm laser diodes as the pump source and a two-segment ytterbium-doped fibre. Utilizing an additive pulse mode-locked technique based on nonlinear polarization evolution, the ytterbium-doped fibre laser can operate in mode-locked state by adjusting the position of polarization controllers. The cavity fundamental repetition rate is 23.78 MHz. We also observe the second- and third-harmonic mode locking in the normal dispersion region, and their repetition rates are 47.66 MHz and 71.56 MHz, respectively. Over-driving of the saturable absorber in the harmonic mode-locking pulse is analysed and discussed in detail.
Resumo:
We report the generation of ultrashort pulses in ytterbium-doped fibre oscillator emitting around 1.05 mum at a repetition rate of 17.6MHz. A diode laser with single silica fibre at 976 nm pumps the ytterbium fibre laser, the all-fibre picosecond pulsed oscillator has excellent stability and compact size, and freedom from misalignment. After amplifying, pulse energy of 3.4 nJ and an average power of 60mW are obtained. The compression is obtained with a grating pair out of the cavity. The compressor produces 307 fs with the peak power 5.47 kW. A practical fibre-based source with good performance is thus demonstrated.
Resumo:
A novel ultra-wideband electromagnetic pulse generating method based on the photoconductive semiconductor switches (PCSS) is presented. Gallium arsenide is used to develop the PCSS for an ultrashort electromagnetic pulse source. The pulse generated by such PCSS is within picosecond (ps) time scale, and can yield power pulse with an voltage over 10 kV. The experimental results show that the pulses are stable, with the peak-peak amplitude change of 6% and the time jitter within several picoseconds. The radiations of the PCSS triggered by the picosecond laser and fenitosecond laser pulse series illustrate that the electromagnetic pulses would have high repetition of more than 80 MHz and frequency bandwidth of DC-6 GHz. The radiations of "lock-on " mode of the PCSS are also analyzed here. (c) 2007 Wiley Periodicals, Inc.