405 resultados para Laser pulse duration
Resumo:
ZnO, as a wide-band gap semiconductor, has recently become a new research focus in the field of ultraviolet optoelectronic semiconductors. Laser molecular beam epitaxy (L-MBE) is quite useful for the unit cell layer-by-layer epitaxial growth of zinc oxide thin films from the sintered ceramic target. The ZnO ceramic target with high purity was ablated by KrF laser pulses in an ultra high vacuum to deposit ZnO thin film during the process of L-MBE. It is found that the deposition rate of ZnO thin film by L-MBE is much lower than that by conventional pulsed laser deposition (PLD). Based on the experimental phenomena in the ZnO thin film growth process and the thermal-controlling mechanism of the nanosecond (ns) pulsed laser ablation of ZnO ceramic target, the suggested effective ablating time during the pulse duration can explain the very low deposition rate of the ZnO film by L-MBE. The unique dynamic mechanism for growing ZnO thin film is analyzed. Both the high energy of the deposition species and the low growth rate of the film are really beneficial for the L-MBE growth of the ZnO thin film with high crystallinity at low temperature.
Resumo:
We report the observation of intense spontaneous emission of green light from LiF:F-2:F-3(+) centers in active channel waveguides generated in lithium fluoride crystals by near-infrared femtosecond laser radiation. While irradiating the crystal at room temperature with 405 nm light from a laser diode, yellow and green emission was seen by the naked eye. Stripe waveguides were fabricated by translating the crystal along the irradiated laser pulse, and their guiding properties and fluorescence spectra at 540 nm demonstrated. This single-step process inducing a waveguide structure offers a good prospect for the development of a waveguide laser in bulk LiF crystals.
Resumo:
Using a home-made seed at 1053 nm from a Yb3+-doped passively mode-locked fiber laser of 1.5 nJ/pulse, 362 ps pulse duration with a repetition rate of 3.842 MHz, a compact, low cost, stable and excellent beam quality non-collinear chirped pulse optical parametric amplifier omitting the bulky pulse stretcher has been demonstrated. A gain higher than 4.0 x 10(6), single pulse energy exceeding 6 mJ with fluctuations less than 2% rms, 14 nm amplified signal spectrum and recompressed pulse duration of 525 fs are achieved. This provides a novel and simple amplification scheme. (c) 2007 Optical Society of America.
Resumo:
Pulses of 177 fs and 1035 nm, with average power of 1.2 mW, have been generated directly from a passively mode-locked Yb-doped figure-of-eight fiber laser, with a nonlinear optical loop mirror for mode-locking and pairs of diffraction gratings for intracavity dispersion compensation. To our knowledge, these are the shortest pulses ever to come from a passively mode-locked Yb-doped figure-of-eight fiber laser. This represents a 5-fold reduction in pulse duration compared with that of previously reported passively mode-locked Yb-doped figure-of-eight fiber lasers. Stable pulse trains are produced at the fundamental repetition rate of the resonator, 24.0 MHz. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report the generation of 207-fs pulses with 1.2mW average power at 1036 nm directly from a passively mode-locked Yb-doped fibre laser with a nonlinear optical loop mirror for mode-locking and pairs of diffraction gratings for intracavity dispersion compensation. These results imply a 4-fold reduction in pulse duration over previously reported figure-of-eight cavity passively mode-locked Yb-doped fibre lasers. Stable pulse trains are produced at the fundamental repetition rate of the resonator, 24.0MHz. On the other hand, this laser offers a cleaner spectrum and greater stability and is completely self-starting.
Resumo:
Stacking chirped pulse optical parametric amplification based on a home-built Yb(3+)-doped mode-locked fiber laser and an all-fiber pulse stacker has been demonstrated. Energic 11 mJ shaped pulses with pulse duration of 2.3 ns and a net total gain of higher than 1.1 x 10(7) at fluctuation less than 2% rms are achieved by optical parametric amplification pumped by a Q-switched Nd:YAG frequency-doubled laser, which provides a simple and efficient amplification scheme for temporally shaped pulses by stacking chirped pulse. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We reported a passive Q-switched diode laser pumped Yb:YAG microchip laser with an ion-implanted semi-insulating GaAs wafer. The wafer was implanted with 400-keV As^(+) in the concentration of 10^(16) ions/cm^(2). To decrease the non-saturable loss, we annealed the ion-implanted GaAs at 500 oC for 5 minutes and coated both sides of the ion-implanted GaAs with antireflection (AR) and highreflection (HR) films, respectively. Using GaAs wafer as an absorber and an output coupler, we obtained 52-ns pulse duration of single pulse.
Resumo:
A passive mode-locked diode-pumped self-frequency-doubling Yb:YAB laser with a low modulation depth semiconductor saturable absorber mirror operating at 374 MHz is demonstrated. The measured pulse duration is 1.98 ps at the wavelength of 1044 nm. The maximum average power reaches 45 mW.
Resumo:
A passive Q-switched flash-lamp-pumped Nd:YAG laser with the ion-implanted semi-insulating GaAs water is reported.The wafer is implanted with 400keV As~+ ions in the concentration of 10~(16)cm~(-2). Using GaAs wafer as an absorber and an output coupler.62ns pulse duration of single pulse is obtained.
Resumo:
We present an efficient method to generate a ultrashort attosecond (as) pulse when a model He+ ion is exposed to the combination of an intense few-cycle chirped laser pulse and its 27th harmonics. By solving the time-dependent Schroumldinger equation, we found that high-order harmonic generation (HHG) from He+ ion is enhanced by seven orders of magnitude due to the presence of the harmonic pulse. After optimizing the chirp of the fundamental pulse, we show that the cut-off energy of the generated harmonics is extended effectively to I-p+25.5U(p). As a result, an isolated 26-as pulse with a bandwidth of 170.5 eV can be obtained directly from the supercontinuum around the cut-off of HHG. To better understand the physical origin of HHG enhancement and attosecond pulse emission, we perform semiclassical simulations and analyze the time-frequency characteristics of attosecond pulse.
Resumo:
Thermal fatigue behavior is one of the foremost considerations in the design and operation of diesel engines. It is found that thermal fatigue is closely related to the temperature field and temperature fluctuation in the structure. In this paper, spatially shaped high power laser was introduced to simulate thermal loadings on the piston. The incident Gaussian beam was transformed into concentric multi-circular beam of specific intensity distribution with the help of diffractive optical element (DOE), and the transient temperature fields in the piston similar to those under working conditions could be achieved by setting up appropriate loading cycles. Simulation tests for typical thermal loading conditions, i.e., thermal high cycle fatigue (HCF) and thermal shock (or thermal low cycle fatigue, LCF) were carried out. Several important parameters that affect the transient temperature fields and/or temperature oscillations, including controlling mode, intensity distribution of shaped laser, laser power, temporal profile of laser pulse, heating time and cooling time in one thermal cycle, etc., were investigated and discussed. The results show that as a novel method, the shaped high power laser can simulate thermal loadings on pistons efficiently, and it is helpful in the study of thermal fatigue behavior in pistons. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
二十世纪八十年代,当比利时冶金研究中心(CRM)开发出CO_2激光毛化冷轧辊技术后,尝试用YAG激光进行轧辊毛化一直吸引着众多的研究者,这是因为YAG(1.06μm)激光波长比CO_2(10.6μm)激光波长短一个量级,材料对YAG激光有更高的吸收率,并用YAG激光可以聚焦到更小的光斑尺寸,同时使用电信号驱动的声光开关技术便于对毛化分布进行可设定控制。但是用传统声光调制的YAG激光虽然可以碇以很高的脉冲频率(>30kHz),但单脉冲有量仅为10mJ左右,难以达到辊面毛化粗糙度的要求,因此人们认为YAG激光用于毛化的主要困难是脉冲能量太小。
Resumo:
A novel pulsed laser surface processing technology is introduced, which can make use of the spatial and temporal profile of laser pulse to obtain ideal hardening parameters. The intensity distribution of laser pulse is spatially and temporally controlled by using laser shape transformation technology. A 3D numerical model including multi-phase transformations is established to explore material microstructure evolution induced by temperature field evolution. The influences of laser spatial-temporal profiles on hardening parameters are investigated. Different from the continuous laser processing technology, results indicate that spatial and temporal profiles are important factors in determining processing quality during pulsed laser processing method.
Resumo:
A hot particle jet is induced as a laser pulse from a free oscillated Nd:YAG laser focused on a coal target. The particle jet successfully initiates combustion in a premixed combustible gas consisting of hydrogen, oxygen, and air. The experiment reveals that the ionization of the particle jet is enhanced during the laser pulse. This characteristic is attributed to the electron cascade process and the ionization of the particles or molecules of the target. The initial free electrons, which are ablated from the coal target, are accelerated by the laser pulse through the inverse Bremsstrahlung process and then collide with the neutrals in the jet, causing the latter to be ionized.
Resumo:
A theoretical model is proposed to describe the microscopic processes involved in the ablation in fused silica induced by femtosecond-laser pulse. Conduction-band electron (CBE) can absorb laser energy, the rate is calculated by quantum mechanical method and classical method. CBE is produced via photoionization (PI) and impact ionization (II). The PI and II rates are calculated by using the Keldysh theory and double-flux model, respectively. Besides the CBE production, we investigate laser energy deposition and its distribution. The equation of energy diffusion in physical space is resolved numerically. Taking energy density E-dep=54 kJ/cm(3) as the criterion, we calculate damage threshold, ablation depth, and ablation volumes. It is found that if energy diffusion is considered, energy density near sample surface is reduced to 1/10, damage threshold is enhanced more than 30%, ablation depth is increased by a factor of 10. Our theoretical results agree well with experimental measurements. Several ultrafast phenomena in fused silica are also discussed. (C) 2004 American Institute of Physics.