280 resultados para Infrared detectors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical analysis of intersubband optical transitions for InAs/ InGaAs quantum dots-in-a-well ( DWELL ) detectors are performed in the framework of effective-mass envelope- function theory. In contrast to InAs/ GaAs quantum dot (QD) structures, the calculated band structure of DWELL quantitatively confirms that an additional InGaAs quantum well effectively lowers the ground state of InAs QDs relative to the conduction-band edge of GaAs and enhances the confinement of electrons. By changing the doping level, the dominant optical transition can occur either between the bound states in the dots or from the ground state in the dots to bound states in the well, which corresponds to the far-infrared and long-wave infrared (LWIR ) peaks in the absorption spectra, respectively. Our calculated results also show that it is convenient to tailor the operating wavelength in the LWIR atmospheric window ( 8 - 12 mu m ) by adjusting the thickness of the InGaAs layer while keeping the size of the quantum dots fixed. Theoretical predictions agree well with the available experimental data. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper frequency dependence of small-signal capacitance of p-i-n UV detectors, which were fabricated on GaN grown on sapphire substrate by metalorganic chemical vapor deposition, has been studied. The Schibli-Milnes model was used to analyze the capacitance-frequency characteristics. According to high frequency C-V measurements, the deep level mean concentration is about 2.98 x 10(20) cm(-3). The deep level is caused by the un-ionised Mg dopant. The calculated Mg activation energy is 260 meV and the hole thermal capture cross section of the deep level is about 2.73 x 10(-22) cm(2). The applicability of the Schibli-Milnes model is also discussed when the concentration of deep levels exceeds that of the heavily doped n-side. It is concluded that the analytic expression of the Schibli-Milnes model can still be used to describe the capacitance-frequency characteristics of GaN p-i-n UV detectors in good agreement with experiment. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel Si stripixel detector, developed at BNL (Brookhaven National Laboratory), has been applied in the development of a prototype Si strip detector system for the PHENIX Upgrade at RHIC. The Si stripixel detector can generate X-Y two-dimensional (2D) position sensitivity with single-sided processing and readout. Test stripixel detectors with pitches of 85 and 560 mu m have been subjected to the electron beam test in a SEM set-up, and to the laser beam test in a lab test fixture with an X-Y-Z table for laser scanning. Test results have shown that the X and Y strips are well isolated from each other, and 2D position sensitivity has been well demonstrated in the novel stripixel detectors. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-consistent calculation of the subband energy levels of n-doped quantum wells is studied. A comparison is made between theoretical results and experimental data. In order to account for the deviations between them, the ground-state electron-electron exchange interactions, the ground-state direct Coulomb interactions, the depolarization effect, and the exciton-like effect are considered in the simulations. The agreement between theory and experiment is greatly improved when all these aspects are taken into account. The ground-to-excited-state energy difference increases by 8 meV from its self-consistent value if one considers the depolarization effect and the exciton-like effect only. It appears that the electron-electron exchange interactions account for most of the observed residual blueshift for the infrared intersubband absorbance in AlxGa1-xN/GaN multiple quantum wells. It seems that electrons on the surface of the k-space Fermi gas make the main contribution to the electron-electron exchange interactions, while for electrons further inside the Fermi gas it is difficult to exchange their positions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The admixture of linear and circular photogalvanic effects and (CPGEs) in AlxGa1-xN/GaN heterostructures has been investigated quantitatively by near-infrared irradiation at room temperature. The spin-based photocurrent that the authors have observed solidly indicates the sizable spin-orbital interaction of the two-dimensional electron gas in the heterostructures. Further analysis shows consistency between studies by optical and magnetic (Shubnikov de-Haas) measurements on the spin-orbital coupling effects among different AlxGa1-xN/GaN heterostructures, indicating that the CPGE measurement is a good way to investigate the spin splitting and the spin polarization in semiconductors. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional (2D) photonic crystal waveguide in the Gamma-K direction with triangular lattice on a silicon-on insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590 nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630 nm, which can be considered as due to the unpolarized source used in the transmission measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the intersubband absorption for spatially ordered and non-ordered quantum dots (QDs). It is found that the intersubband absorption of spatially ordered QDs is much stronger than that of non-ordered QDs. The enhanced absorption is attributed to the improved size uniformity concurrent with the spatial ordering for the growth condition employed. For the FTIR measurement under normal incidence geometry, using a undoped sample as reference can remove the interference effect due to multiple reflections. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced near-infrared photoluminescence (PL) from sulfur-related isoelectronic luminescent centers in silicon was observed from thermally quenched sulfur-implanted silicon in which additional copper or silver ions had been coimplanted. The PL from the sulfur and copper coimplanted silicon peaked between 70 and 100 K and persisted to 260 K. This result strongly supports the original conjecture from the optical detection of magnetic resonance studies that the strong PL from sulfur-doped silicon comes from S-Cu isoelectronic complexes [Frens , Phys. Rev. B 46, 12316 (1992); Mason , ibid. 58, 7007 (1998).]. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intense room-temperature near infrared (NIR) photoluminescence (980 nm and 1032 nm) is observed from Yb,Al co-implanted SiO2 films on silicon. The optical transitions occur between the F-2(5/2) and F-2(7/2) levels of Yb3+ in SiO2. The additional Al-implantation into SiO2 films can effectively improve the concentration quenching effect of Yb3+ in SiO2. Photoluminescence exitation sprectroscopy shows that the NIR photoluminescence is due to the non-radiative energy transfer from Al-implantation-induced non-bridging oxygen hole defects in SiO2 to Yb3+ in the Yb-related luminescent complexes. It is believed that the defect-mediated luminscence of rare-earth ions in SiO2 is very effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current-based microscopic defect analysis method such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current have been developed over the years at Brookhaven National Laboratory (BNL) for the defect characterizations on heavily irradiated (Phi(n) >= 10(13) n/cm(2)) high-resistivity (>= 2 k Omega cm) Si sensors/detectors. The conventional DLTS method using a capacitance transient is not valid on heavily irradiated high-resistivity Si sensors/detectors. A new optical filling method, using lasers with various wavelengths, has been applied, which is more efficient and suitable than the traditional voltage-pulse filling. Optimum defect-filling schemes and conditions have been suggested for heavily irradiated high-resistivity Si sensors/detectors. (c) 2006 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have made a normal incidence high infrared absorption efficiency AlAs/Al0.55Ga0.45As multiple-quantum-well structure grown on (211) GaAs substrates by molecular beam epitaxy (MBE). A strong infrared absorption signal at 11.6 mu m due to the transition of the ground state to the first excited state, and a small signal at 6.8 mu m due to the transition from the ground state to continuum. were observed. A 45 degrees tilted incidence measurement was also performed on the same sample for the comparison with a normal incidence measurement. Both measurements provide important information about the quantum well absorption efficiency. Efficiencies which evaluate the absorption of electric components perpendicular and parallel to the well plane are eta(perpendicular to) = 25% and eta(parallel to) = 88%, respectively. The total efficiency is then deduced to be eta = 91%. It is apparent that the efficiency eta(parallel to) dominates the total quantum efficiency eta Because an electron in the (211) AlAs well has a small effective mass (m(zx)* or m(zy)*), the normal incidence absorption coefficient is expected to be higher:than that grown on (511) and (311) substrates. Thus, in the present study, we use the (211) substrate to fabricate QWIP. The experimental results indicate the potential of these novel structures for use as normal incidence infrared photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.