153 resultados para HIGH-SPIN ISOMERS
Resumo:
An analytical model for the spin filtering transport in a ferromagnetic-metal - Al2O3 - n-type semiconductor tunneling structure has been developed, and demonstrated that the ratio of the helicity-modulated photo-response to the chopped one is proportional to the sum of the relative asymmetry in conductance of two opposite spin-polarized tunneling channels and the MCD effect of the ferromagnetic metal film. The performed measurement in an iron-metal/Al2O3/n-type GaAs tunneling structure under the optical spin orientation has verified that all the aspects of the experimental results are very well in accordance with our model in the regime of the spin filtering. After the MCD effect of the iron film is calibrated by an independent measurement, the physical quantity of Delta G(t)/G(t) (Delta G(t) = G(t)(up arrow) - G(t)(down arrow) is the difference of the conductance between two opposite spin tunneling channels, G(t) =( G(t)(up arrow) + G(t)(down arrow))/2 the averaged tunneling conductance), which concerns us most, can be determined quantitatively with a high sensitivity in the framework of our analytical model. Copyright (c) EPLA, 2008.
Resumo:
We report on the investigation of electron spin quantum beats at room temperature in GaAsN thin films by time-resolved Kerr rotation technique. The measurement of the quantum beats, which originate from the Larmor precession of electron spins in external transverse magnetic field, yields an accurate determination of the conduction electron g factor. We show that the g factor of GaAs1-xNx thin films is significantly changed by the introduction of a small nitrogen fraction.
Resumo:
Spin-orbit interactions in a two-dimensional electron gas were studied in an InAlAs/InGaAs/InAlAs quantum well. Since weak anti localization effects take place far beyond the diffusive regime, (i.e., the ratio of the characteristic magnetic field, at which the magnetoresistance correction maximum occurs, to the transport magnetic field is more than ten) the experimental data are examined by the Golub theory, which is applicable to both diffusive regime and ballistic regime. Satisfactory fitting lines to the experimental data have been achieved using the Golub theory. In the strong spin-orbit interaction two-dimensional electron gas system, the large spin splitting energy of 6.08 meV is observed mainly due to the high electron concentration in the quantum well. The temperature dependence of the phase-breaking rate is qualitatively in agreement with the theoretical predictions. (C) 2009 The Japan Society of Applied Physics
Resumo:
We report experimental results of the effect of Ka-band microwave on the spin dynamics of electrons in a two-dimensional electron system (2DES) in a GaAs/Al0.35Ga0.65As heterostructure via time-resolved Kerr rotation measurements. While the microwave reduces the transverse spin lifetime of electrons in the bulk GaAs, it significantly increases that in the 2DES, from 745 to 1213 ps, when its frequency is close to the Zeeman splitting of the electrons in the magnetic field. Such a microwave-enhanced spin lifetime is ascribed to the microwave-induced electron scattering which leads to a "motional narrowing" of spins via D'yakonov-Perel' mechanism.
Resumo:
Spin dynamics in (Ga,Mn)As films grown on GaAs(001) was investigated by Time-resolved magneto-optical Kerr effect. The Kerr signal decay time of (Ga,Mn)As without external magnetic field applied was found to be several hundreds picoseconds, which suggested that photogenerated polarized holes and magnetic ions are coupled as a ferromagnetic system. Nonmonotonic temperature dependence of relaxation and dephasing (R&D) time and Larmor frequency manifests that Bir-Aronov-Pikus mechanism dominates the spin R&D time at low temperature, while D'yakonov-Perel mechanism dominates the spin R&D time at high temperature, and the crossover between the two regimes is Curie temperature.
Resumo:
We have investigated spin polarization-related localized exciton photoluminescence (PL) dynamics in GaInNAs quantum wells by time-resolved PL spectroscopy. The emission energy dependence of PL polarization decay time as well as polarization-independent PL decay time suggests that the acoustic phonon scattering in the process of localized exciton transfer from the high-energy localized states to the low-energy ones dominates the PL polarization relaxation. By increasing the excitation power from 1 to 10 mW, the PL polarization decay time is changed from 0.17 to more than 1 ns, which indicates the significant effect of the trapping of localized electrons by nonradiative recombination centers. These experimental findings indicate that the spin-related PL polarization in diluted nitride semiconductors can be manipulated through carrier scattering and recombination process. (C) 2009 The Japan Society of Applied Physics
Resumo:
In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.
Resumo:
Magneto-transport measurements have been carried out on three heavily Si delta-doped In-0.52 Al-0.48 As/In-0.53 Ga-0.47 As/In-0.52 A(10.48) As single quantum well samples in which two subbands were occupied by electrons. The weak anti-localization (WAL) has been found in such high electron mobility systems. The strong Rashba spin-orbit (SO) coupling is due to the high structure inversion asymmetry (SIA) of the quantum wells. Since the WAL theory model is so complicated in fitting our experimental results, we obtained the Rashba SO coupling constant alpha and the zero-field spin splitting Delta(0) by an approximate approach. The results are consistent with that obtained by the Shubnikov-de Haas (SdH) oscillation analysis. The WAL effect in high electron mobility system suggests that finding a useful approach for deducing alpha and Delta(0) is important in designing future spintronics devices that utilize the Rashba SO coupling.
Resumo:
A Shubnikov-de Haas (SdH) oscillation measurement was performed on highly doped InAlAs/InGaAs metamorphic high-electron-mobility transistors on GaAs substrates at a temperature of 1.4 K. By analyzing the experimental data using fast Fourier transform, the electron densities and mobilities of more than one subband are obtained, and an obvious double-peak structure appears at high magnetic field in the Fourier spectrum. In comparing the results of SdH measurements, Hall measurements, and theoretical calculation, we found that this double-peak structure arises from spin splitting of the first-excited subband (i=1). Very close mobilities of 5859 and 5827 cm(2)/V s are deduced from this double-peak structure. The sum of the carrier concentration of all the subbands in the quantum well is only 3.95x10(12) cm(-2) due to incomplete transfer of the electrons from the Si delta -doped layer to the well. (C) 2001 American Institute of Physics.
Resumo:
Cyclotron resonance (CR) of high density GaAs quantum wells exhibits well-resolved spin splitting above the LO-phonon frequency. The spin-up and spin-down CR frequencies are reversed relative to the order expected from simple band nonparabolicity. We demonstrate that this is a consequence of the blocking of the polaron interaction which is a sensitive function of the filling of the Landau levels.
Resumo:
We report on high-frequency (300-700 GHz) ferromagnetic resonance (HF-FMR) measurements on cobalt superparamagnetic particles with strong uniaxial effective anisotropy. We derive the dynamical susceptibility of the system on the basis of an independent-grain model by using a rectangular approach. Numerical simulations give typical line shapes depending on the anisotropy, the gyromagnetic ratio, and the damping constant. HF-FMR experiments have been performed on two systems of ultrafine cobalt particles of different sizes with a mean number of atoms per particles of 150 +/- 20 and 310 +/- 20. In both systems, the magnetic anisotropy is found to be enhanced compared to the bulk value, and increases as the particle size decreases, in accordance with previous determinations from magnetization measurements. Although no size effect has been observed on the gyromagnetic ratio, the transverse relaxation time is two orders of magnitude smaller than the bulk value indicating strong damping effects, possibly originating from surface spin disorders.
Resumo:
Solid films containing phosphorus impurities were formed on p-type silicon wafer surface by traditional spin-on of commercially available dopants. The doping process is accomplished by irradiating the sample with a 308 nm XeCl pulsed excimer laser. Shallow junctions with a high concentration of doped impurities were obtained. The measured impurity profile was ''box-like'', and is very suitable for use in VLSI devices. The characteristics of the doping profile against laser fluence (energy density) and number of laser pulses were studied. From these results, it is found that the sheet resistance decreases with the laser fluence above a certain threshold, but it saturates as the energy density is further increased. The junction depth increases with the number of pulses and the laser energy density. The results suggest that this simple spin-on dopant pre-deposition technique can be used to obtain a well controlled doping profile similar to the technique using chemical vapor in pulsed laser doping process.
Resumo:
The cyclotron resonance (CR) of electrons in GaAs/AlGaAs quantum wells is investigated theoretically to explain a recent CR experiment, where two CR peaks were observed at high magnetic fields when both spin-up and spin-down states of the lowest Landau level are occupied. Our theoretical model takes into account the conduction band non-parabolicity, the electron bulk longitude-optic-phonon coupling, and the self-consistent subband structure. A good agreement is found.
Resumo:
Electron spin relaxation and related mechanisms in heavily Mn-doped (Ga,Mn) As are studied by performing time-resolved magneto-optical Kerr effect measurements. At low temperature, s-d exchange scattering dominates electron spin relaxation, whereas the Bir-Aronov-Pikus mechanism and Mn impurity scattering play important roles at high temperature. The temperature-dependent spin relaxation time exhibits an anomaly around the Curie temperature (T(c)) that implies that thermal fluctuation is suppressed by short-range correlated spin fluctuation above T(c). (C) 2010 American Institute of Physics. [doi:10.1063/1.3531754]