372 resultados para FSH-P
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
于AD批量导入至AEzhangdi
Resumo:
于AD批量导入至AEzhangdi
Resumo:
Using the density function theory within the generalized gradient approximation, the band structures of wurtzite ZnO, BeO and MgO have been calculated. The effective-mass parameters are fitted using the calculated eigenvalues. The Dresselhaus spin-orbit effect appears in the k[1 00] direction, and is zero in the high symmetry direction k[00 1]. The orderings of valence band split by the crystal-field and spin-orbit coupling in wurtzite ZnO, BeO and MgO are identified by analyzing the wave function characters calculated by projecting the wave functions onto p-state in the spherical harmonics. For wurtzite ZnO, the ordering of valence band is Still Gamma(7) > Gamma(9) > Gamma(7) due to the negative spin-orbit coupling splitting energy and the positive crystal-field splitting energy. Thus, the Thomas' conclusion is confirmed. For wurtzite BeO and MgO, although their orderings of valence bands are Gamma(7) > Gamma(9) > Gamma(7) too, the origins of their orderings are different from that of wurtzite ZnO. Zn1-x,YxO (Y = Mg, Be) doped with N and P atoms have been studied using first-principles method. The calculated results show that N atom doped in Zn1-x BexO has more shallow acceptor energy level with increasing the concentration of Be atom. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Using first-principles methods we have calculated electronic structures, optical properties, and hole conductivities of CuXO2 (X=Y, Sc, and Al). We show that the direct optical band gaps of CuYO2 and CuScO2 are approximately equal to their fundamental band gaps and the conduction bands of them are localized. The direct optical band gaps of CuXO2 (X=Y, Sc, and Al) are 3.3, 3.6, and 3.2 eV, respectively, which are consistent with experimental values of 3.5, 3.7, and 3.5 eV. We find that the hole mobility along long lattice c is higher than that along other directions through calculating effective masses of the three oxides. By analyzing band offset we find that CuScO2 has the highest valence band maximum (VBM) among CuXO2 (X=Y, Sc, and Al). In addition, the approximate transitivity of band offset suggests that CuScO2 has a higher VBM than CuGaO2 and CuInO2 [Phys. Rev. Lett. 88, 066405 (2002)]. We conclude that CuScO2 has a higher p-type doping ability in terms of the doping limit rule. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2991157]
Resumo:
p-GaN surfaces are nano-roughened by plasma etching to improve the optical performance of GaN-based light emitting diodes (LEDs). The nano-roughened GaN present a relaxation of stress. The light extraction of the LEDs with nano-roughened surfaces is greatly improved when compared with that of the conventional LEDs without nano-roughening. PL-mapping intensities of the nano-roughened LED epi-wafers for different roughening times present two to ten orders of enhancement. The light output powers are also higher for the nano-roughened LED devices. This improvement is attributed to that nano-roughened surfaces can provide photons multiple chances to escape from the LED surfaces.
Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors
Resumo:
We investigated the influence of thickness of p-GaN layer on the performance of p-i-n structure GaN ultraviolet photodetector. Through the simulation calculation, it was found that both the quantum efficiency and dark current of device decrease when employing thicker p-GaN layer, while both the quantum efficiency and dark current increase with decreasing thickness of p-GaN layer. It is suggested that the Schottky contact junction between the metal and p-GaN may be responsible for the incompatible effect. We has to make a suitable choice of the thickness of p-GaN in the device design according to the application requirement.
Resumo:
We investigate the dependence of the differential reflection on the structure parameters of quantum dot (QD) heterostructures in pump-probe reflection measurements by both numerical simulations based on the finite-difference time-domain technique and theoretical calculations based on the theory of dielectric films. It is revealed that the value and sign of the differential reflection strongly depend on the thickness of the cap layer and the QD layer. In addition, a comparison between the carrier dynamics in undoped and p-doped InAs/GaAs QDs is carried out by pump-probe reflection measurements. The carrier capture time from the GaAs barrier into the InAs wetting layer and that from the InAs wetting layer into the InAs QDs are extracted by appropriately fitting differential reflection spectra. Moreover, the dependence of the carrier dynamics on the injected carrier density is identified. A detailed analysis of the carrier dynamics in the undoped and p-doped QDs based on the differential reflection spectra is presented, and its difference with that derived from the time-resolved photoluminescence is discussed. (C) 2008 American Institute of Physics.
Resumo:
Considering tensile-strained p-type Si/Si1-yGey quantum wells grown on a relaxed Si1-xGex ( 0 0 1) virtual substrate ( y < x), the hole subband structure and the effective masses of the first bound hole state in the quantum wells are calculated by using the 6 x 6 k center dot p method. Designs for tensile-strained p-type quantum well infrared photodetectors ( QWIPs) based on the bound-to-quasi-bound transitions are discussed, which are expected to retain the ability of coupling normally incident infrared radiation without any grating couplers, have lower dark current than n-type QWIPs and also have a larger absorption coefficient and better transport characteristics than normal unstrained or compressive-strained p-type QWIPs.