158 resultados para Elliptic orbit
Resumo:
Based on the valence subbands of the zinc-blende GaN/Ga0.85Al0.15N strained quantum wells obtained by a 6x6 Hamiltonian (including heavy hole, light hole and spin-orbit splitting band), optical gain and radiative current density are calculated for the strained quantum well laser structures. The compressive strain in the GaN well region strongly depresses the TM mode optical gain and enhances the TE mode optical gain.
Resumo:
The study of rotation-alignment of quasiparticles probes sensitively the properties of high-j intruder orbits. The distribution of very-high-j orbits, which are consequences of the fundamental spin-orbit interaction, links with the important question of single-particle levels in superheavy nuclei. With the deformed single-particle states generated by the standard Nilsson potential, we perform Projected Shell Model calculations for transfermium nuclei where detailed spectroscopy experiments are currently possible. Specifically, we study the systematical behavior of rotation-alignment and associated band-crossing phenomenon in Cf, Fm, and No isotopes. Neutrons and protons from the high-j orbits are found to compete strongly in rotation-alignment, which gives rise to testable effects. Observation of these effects will provide direct information on the single-particle states in the heaviest nuclear mass region.
Resumo:
The charge stripping injection method has been adopted for the accumulation of light heavy ions in HIRFL-CSR. This method has some special requirements for the accelerating particles, and at the same time the structure of the injection orbit has to be changed. In this paper, the design of the orbit has been presented, as well as the calculation of the beam line matching. According to the result of commissioning, stripping injection can accumulate the beam to a higher current.
Resumo:
Small-angle multiple intrabeam scattering (IBS) is an important effect for heavy-ion storage rings with electron cooling, because the cooling time is determined by the equilibrium between cooling and IBS process. All usually used numerical algorithms of IBS growth rate calculations are based on the model of the collisions proposed by A.Piwinski, but this result is a multidimensional integral. In this paper, the IBS growth rates are simulated for HIRFL-CSR using symmetric elliptic integral method, and compared with several available IBS code results.
Resumo:
The direct Coulomb ionization process can be generally well described by the ECPSSR theory, which bases on the perturbed-stationary- state(PSS) and accounts for the energy-loss, Coulomb-deflection, and relativistic effects. But the ECPSSR calculation has significant deviations for heavy projectile at low impinging energies. In this paper we propose a new modified ECPSSR theory, i.e. MECUSAR, in which PSS is replaced by an united and separated atom model, and molecule-orbit effect is considered. The MECUSAR calculations give better agreement with the experimental data at lower impinging energies, and agree with the ECPSSR calculations at high energies. By using OBKN (Oppenheimer-Brinkman-Kramers formulas of Nikolaev) theory to describe the contribution of the electron capture, we further modified the proposed MECUSAR theory, and calculated the target ionization cross sections for different charge states of the projectile.
Resumo:
The cooling storage ring, to be built at Lanzhou, will be able to deliver heavy ion beams up to uranium up to 0.52 GeV/u. It is expected to make considerable contribution to nuclear EOS study in the high net baryon-density region. With a relativistic transport model, we performed simulations for U+U collisions with different orientations. It is shown that by combining the forward neutron multiplicity and an event-wise elliptic flow selection, it is possible to identify the tip - tip and body - body head-on collisions. The effective identification of these two extreme configurations will allow us to study the EOS at the highest baryon density in the U+U collisions.
Resumo:
Al K-shell X-ray yields are measured with highly charged Arq+ ions (q = 12-16) bombarding against aluminium. The energy range of the Ar ions is from 180 to 380 keV. K-shell ionization cross sections of aluminium are also obtained from the yields data. The experimental data is explained within the framework of 2p pi-2p sigma s rotational coupling. When Ar ions with 2p-shell vacancies are incident on aluminium, the vacancies begin to reduce. Meanwhile, collisions against Al atoms lead to the production of new 2p-shell vacancies of Ar ions. These Ar 2p-shell vacancies will transfer to the 1s orbit of an Al atom via 2p pi-2p sigma s rotational coupling leading to the emission of a K-shell X-ray of aluminiun. A model is constructed based on the base of the above physical scenario. The calculation results of the model are in agreement with the experimental results.
Resumo:
The axially deformed relativistic mean field theory is applied to study the isotope shift of charge distributions of odd-Z Pr isotope chain. The nuclear structure associated with the shell and the isotope effect is investigated. The mechanism of link in the isotope shift at the neutron magic number N = 82 is revealed to be dependent on the neutron energy level structure at the Fermi energy, demonstrating that the spin-orbit coupling interaction and p-n attraction are well described by the relativistic mean field theory.
Resumo:
Application of electron-cooling upgrades the quality of ion beams in the storage rings and brings new problems. The transverse magnetic field distorts the ion orbit while guiding the intense electron beam. The closed-orbit distortion should be and can be localized and controlled well inside the ring acceptance. This paper deals with the field in the e-cool section and concomitant COD of ion orbit and shows the correction scheme.
Resumo:
Recent experimental data have revealed large mirror energy differences (MED) between high-spin states in the mirror nuclei Se-67 and As-67, the heaviest pair where MED have been determined so far. The MED are generally attributed to the isospin symmetry breaking caused by the Coulomb force and by the isospin-nonconserving part of the nucleon-nucleon residual interaction. The different contributions of the various terms have been extensively studied in the fp shell. By employing large-scale shell-model calculations, we show that the inclusion of the g(9/2) orbit causes interference between the electromagnetic spin-orbit and the Coulomb monopole radial terms at high spin. The large MED are attributed to the aligned proton pair excitations from the p(3/2) and f(5/2) orbits to the g(9/2) orbit. The relation of the MED to deformation is discussed.
Resumo:
A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.
Resumo:
Within the framework of the improved isospin-dependent quantum molecular dynamics model, the dynamics of pion emission in heavy-ion collisions in the region of 1A GeV energies as a probe of nuclear symmetry energy at suprasaturation densities is investigated systematically. The total pion multiplicities and the pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6, Ska, and SIII and also for the cases of different stiffness of symmetry energy with the parameter SLy6. The influence of Coulomb potential, symmetry energy, and in-medium pion potential on the pion production is investigated and compared to each other by analyzing the distributions of transverse momentum and longitudinal rapidity and also the excitation functions of the total pion and the pi(-)/pi(+) ratio. The directed flow, elliptic flow, and polar-angle distributions are calculated for the cases of different collision centralities and also the various stiffnesses of the symmetry energies. A comparison of the calculations with the available experimental data is performed.
Resumo:
Parity (P)-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in noncentral collisions. To study this effect, we investigate a three-particle mixed-harmonics azimuthal correlator which is a P-even observable, but directly sensitive to the charge-separation effect. We report measurements of this observable using the STAR detector in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators and discuss in detail possible contributions from other effects that are not related to P violation.