372 resultados para ring lasers
Resumo:
The distribution of energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring was investigated by applying the effective mass approximation and the perturbation method. In 2D polar coordinates, the exact solution to the Schrodinger equation was used to calculate the perturbation integral in a parabolic confinement potential. The numerical results show that the energy levels of electron are sensitively dependent on the radius of the quantum ring and a minimum exists on account of the parabolic confinement potential. With decreasing the radius, the energy spacing between energy levels increases. The degenerate energy levels of the first excited state for hydrogenic impurities are not relieved, and when the degenerate energy levels are split and the energy spacing will increase with the increase in the radius. The energy spacing between energy levels of electron is also sensitively dependent on the angular frequency and will increase with the increases in it. The degenerate energy levels of the first excited state are not relieved. The degenerate energy levels of the second excited state are relieved partially. The change in angular frequency will have a profound effect upon the calculation of the energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring. The conclusions of this paper will provide important guidance to investigating the optical transitions and spectral structures in quantum ring.
Resumo:
In this paper, we propose the dynamic P-V curve for modulator and P-I curve for laser diode, and present a simple approach to deriving the curves from the small-signal frequency responses measured using a microwave network analyzer. The linear response range, modulation efficiency, optimal driving conditions at different frequency can, therefore, be determined. It is demonstrated that the large-signal performance of electro-absorption (EA) modulator and the directly modulated semiconductor lasers can be predicted from the dynamic curved surface. Experiments show a good agreement between the evaluated characteristics and the measured large-signal performance.
Resumo:
We theoretically investigate the charge and spin currents in a three-terminal mesoscopic ring in the presence of a uniform and nonuniform Rashba spin-orbit interaction (SOI). It is shown that a fully spin-polarized charge current and a pure spin current can be generated by tuning the probe voltages and/or the strength of the Rashba SOI. The charge and spin currents oscillate as the strength of the Rashba SOI increases induced by the spin quantum interference. The ratio of probe voltages oscillates synchronously with the pure spin current as the strength of the Rashba SOI increases in a nonuniform Rashba ring, while it remains constant in a uniform Rashba ring. We demonstrate theoretically that a three-terminal uniform Rashba ring can be used as a spin polarizer and/or spin flipper for different spin injections, and a nonuniform Rashba ring could allow us to detect the pure spin current electrically. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3054322]
Resumo:
We have fabricated 1.3-mu m InAs-GaAs quantum-dot (QD) lasers with and without p-type modulation doping and their characteristics have been investigated. We find that introducing p-type doping in active regions can improve the temperature stability of 1.3-mu m InAs-GaAs QD lasers, but it does not, increase the saturation modal gain of the QD lasers. The saturation modal gain obtained from the two types of lasers is identical (17.5 cm(-1)). Moreover, the characteristic temperature increases as cavity length increases for the two types of lasers, and it improves more significantly for the lasers with p-type doping due to their higher gain.
Resumo:
The characteristics of whispering-gallery-like modes in the equilateral triangle and square microresonators are introduced, including directional emission triangle and square microlasers connected to an output waveguide. We propose a photonic interconnect scheme by connecting two directional emission microlasers with an optical waveguide on silicon integrated circuit chip. The measurement indicates that the triangle microlasers can work as a resonance enhanced photodetector for optical interconnect.
Resumo:
High material quality is the basis of quantum cascade lasers (QCLs). Here we report the solid source molecular beam epitaxy (MBE) growth details of realizing high quality of InGaAs/InAlAs QCL structures. Accurate control of material compositions, layer thickness, doping profile, and interface smoothness can be realized by optimizing the growth conditions. Double crystal x-ray diffraction discloses that our grown QCL structures possess excellent periodicity and sharp interfaces. High quality laser wafers are grown in a single epitaxial run. Room temperature continuous-wave (cw) operation of QCLs is demonstrated.
Resumo:
We report on recent experimental results of the spontaneous antiphase dynamics that occurs in a laser-diode-pumped multimode passively Q-switched microchip Yb:YAG (where YAG is yttrium aluminum garnet) lasers with a saturable absorber GaAs. We observe that the pulse sequence of the first mode characterized by one, two, and three pulses as a group and all the modes display an antiphase state as the pumping ratio rises. We modify the multimode rate equations to account for nonlinear absorption due to GaAs in the presence of spatial hole burning. We perform numerical simulations based on the proposed rate equations and reproduce the observed antiphase state of two and three active modes.
Resumo:
A gain measurement technique, based on Fourier series expansion of periodically extended single fringe of the amplified spontaneous emission spectrum, is proposed for Fabry-Perot semiconductor lasers. The underestimation of gain due to the limited resolution of the measurement system is corrected by a factor related to the system response function. The standard deviations of the gain-reflectivity product under low noise conditions are analyzed for the Fourier series expansion method and compared with those of the Hakki-Paoli method and Cassidy's method. The results show that the Fourier series expansion method is the least sensitive to noise among the three methods. The experiment results obtained by the three methods are also presented and compared.
Resumo:
Quasi-continuous-wave operation of AlGaAs/GaAs-based quantum cascade lasers (lambda similar to 9 mu m) up to 165 K is reported. The strong temperature dependence of the threshold current density and its higher value in high duty cycle is investigated in detail. The self-heating effect in the active region is explored by changing the operating duty cycles. The degradation of lasing performance with temperature is explained. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We develop 5.5-mu m InxGa1-xAs/InyAl1-yAs strain-compensated quantum cascade lasers with InP and InGaAs cladding layers by using solid-source molecular-beam epitaxy. Pulse operation has been achieved up to 323 K (50 degrees C) for uncoated 20-mu m-wide and 2-mm-long devices. These devices display an output power of 36 mW with a duty cycle of 1% at room temperature. In continuous wave operation a record peak optical power of 10 mW per facet has been measured at 83 K.
Resumo:
Two novel methods for analyzing the parasitics of packaging networks are proposed based on the relations between the scattering parameters of a semiconductor laser before and after packaging, and the experiments are designed and performed using our methods. It is found that the analysis results of the two methods are in good agreement with the measurements. Either of the two methods can provide an alternative approach for characterizing the packaging parasitics for semiconductor lasers, and both are convenient due to the developed measurement techniques. (c) 2005 Wiley Periodicals, Inc.
Resumo:
We report on a VSAL structure fabricated by a 650 nm edge emitting laser diode with an Au-coated facet and an aperture size of 250 x 500 nm. The far field output power can maintain at 1 mW and the power density is 7.5 mW/mu m(2). Some properties of the VSAL including the threshold current change, the red-shift of the spectral position, and the strong relative-intensity-noise are presented. The physical mechanisms responsible for these phenomena are also discussed, which may contribute to the understanding and application of the potential device for near-field optics.
Resumo:
A comprehensive two-level numerical model is developed to describe carrier distribution in a quantum-dot laser. Light-emission spectra with different intraband relaxation rates (2ps, 7.5ps and 20ps) are calculated and analysed to investigate the influence of relaxation rates on performance of the quantum-dot laser. The results indicate that fast intraband relaxation favours not only the ground state single mode operation but also the higher injection efficiency.
Resumo:
A theoretical study on 1.3 mu m GaAs-based quantum dot vertical-cavity surface-emitting lasers (VCSELs) was made. Investigation of the influence of VCSELs on the optical confinement factors and the optical loss and the calculation of the material gain of the assembled InGaAs/GaAs quantum dots. Analysis of the threshold characteristic was made and the multi-wavelength cavity and multilayer quantum-dot stack structure is found to be more suitable for quantum dot VCSELs.
Resumo:
The fabrication of very-small-aperture lasers is demonstrated, and their performance is analyzed. Because of strong optical feedback caused by a gold film on the front facet of the laser, its behavior changes: The threshold current decreases, the density of light inside the laser diode and the redshift effect of the spectra are enhanced, and the laser diode's lifetime is shorter than that of common laser diodes with large driving current. (c) 2005 Optical Society of America