144 resultados para National Science Week


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel ameliorated phase generated carrier (PGC) demodulation algorithm based on arctangent function and differential-self-multiplying (DSM) is proposed in this paper. The harmonic distortion due to nonlinearity and the stability with light intensity disturbance (LID) are investigated both theoretically and experimentally. The nonlinearity of the PGC demodulation algorithm has been analyzed and an analytical expression of the total-harmonic-distortion (THD) has been derived. Experimental results have confirmed the low harmonic distortion of the ameliorated PGC algorithm as expected by the theoretical analysis. Compared with the traditional PGC-arctan and PGC-DCM algorithm, the ameliorated PGC algorithm has a much lower THD as well as a better signal-to-noise-and-distortion (SINAD). A THD of below 0.1% and a SINAD of 60 dB have been achieved with PGC modulation depth (value) ranges from 1.5 to 3.5 rad. The stability performance with LID has also been studied. The ameliorated PGC algorithm has a much higher stability than the PGC-DCM algorithm. It can keep stable operations with LID depth as large as 26.5 dB and LID frequency as high as 1 kHz. The system employing the ameliorated PGC demodulation algorithm has a minimum detectable phase shift of 5 mu rad/root Hz @ 1 kHz, a large dynamic range of 120 dB @ 100 Hz, and a high linearity of better than 99.99%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work was supported by the National Science Foundation of China (60976008 and 60776015), the Special Funds for Major State Basic Research Project (973 program) of China (2006CB604907), and the 863 High Technology R&D Program of China (2007AA03Z402 and 2007AA03Z451). The authors express their appreciations to Prof. Yongliang Li (Analytical and Testing Center, Beijing Normal University) for FE-SEM measurements, to DrTieying Yang and Prof. Huanhua Wang (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences) for XRD measurements and helpful discussions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work was supported by the 863 High Technology R&D Program of China (Grant Nos. 2007AA03Z402 and 2007AA03Z451), the Special Funds for Major State Basic Research Project (973 program) of China (Grant No. 2006CB604907), and the National Science Foundation of China (Grant Nos. 60506002 and 60776015). The authors express their appreciation to Dr. Tieying Yang and Prof. Huanhua Wang (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences) for XRD measurements and helpful discussions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate surface emitting distributed feedback quantum cascade lasers emitting at wavelengths from 8.1 mu m at 90 K to 8.4 mu m at 210 K. The second-order metalized grating is carefully designed using a modified coupled-mode theory and fabricated by contact lithography. The devices show single mode behavior with a side mode suppression ratio above 18 dB at all working temperatures. At 90 K, the device emits an optical power of 101 mW from the surface and 199 mW from the edge. In addition, a double-lobe far-field pattern with a separation of 2.2 degrees is obtained in the direction along the waveguide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intersubband absorption energy shifts in 3-level system stemming from depolarization and excitonlike effects are investigated. Analytically, the expressions we derive present good explanations to the conventional 2-level results and bare potential transition energy results; and numerical results show that they are more exact than the previous studies to describe the 3-level system depolarization and excitonlike shift (DES) character especially for higher carrier density (more than 8 x 10(11) cm(-2)). One interesting detail we find is that the "large blue" DES becomes "slight redshift" in the low doping limit (less than 1.9 x 10(11) cm(-2)), which may be neglected by the previous studies of intersubband transitions. Temperature character of DES in the step well structure is also numerically studied. Finally the above are applied to calculate asymmetric step quantum well structures. The two main functional aspects of terahertz (THz) emitters are discussed and several basic optimizing conditions are considered. By adjusting the well geometry parameters and material composition systematically, some optimized structures which satisfy all of the six conditions are recommended in tables. These optimizations may provide useful references to the design of 3-level-based optically pumping THz emitters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dark current characteristics and temperature dependence for quantum dot infrared photodetectors have been investigated by comparing the dark current activation energies between two samples with identical structure of the dots-in-well in nanoscale but different microscale n-i-n environments. A sequential coupling transport mechanism for the dark current between the nanoscale and the microscale processes is proposed. The dark current is determined by the additive mode of two activation energies: E-a,E-micro from the built-in potential in the microscale and E-a,E-nano related to the thermally assisted tunneling in nanoscale. The activation energies E-a,E-micro and E-a,E-nano decrease exponentially and linearly with increasing applied electric field, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Without introducing concentration quenching phenomenon, a few wt% of Tb3+ and Yb3+ ions were doped into a group of easily-fiberized tellurite glasses characterized by loose polyhedron structures and rich interstitial positions. Intense green upconversion emission from Tb3+ ions centered at 539 nm due to transition 5D4→7F5 was observed by direct excitation of Yb3+ ions with a laser diode at 976 nm. Optimizing the concentration ratio of Tb3+/Yb3+, a tellurite glass with composition of 80TeO2-10ZnO-10Na2O (mol%)+1.0wt% Tb2O3+3.0wt% Yb2O3 was found to present the highest green light intensity and therefore is especially suitable for efficient green fiber laser development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An augmented immersed interface method (IIM) is proposed for simulating one-phase moving contact line problems in which a liquid drop spreads or recoils on a solid substrate. While the present two-dimensional mathematical model is a free boundary problem, in our new numerical method, the fluid domain enclosed by the free boundary is embedded into a rectangular one so that the problem can be solved by a regular Cartesian grid method. We introduce an augmented variable along the free boundary so that the stress balancing boundary condition is satisfied. A hybrid time discretization is used in the projection method for better stability. The resultant Helmholtz/Poisson equations with interfaces then are solved by the IIM in an efficient way. Several numerical tests including an accuracy check, and the spreading and recoiling processes of a liquid drop are presented in detail. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new criterion for shear band formation in metallic glasses is proposed based on the shear plane criterion proposed by Packard and Schuh [1]. This modified shear plane (MSP) criterion suggests that a shear band is not initiated randomly throughout the entire material under stress but is initiated at the physical boundaries or defects and at locations where the highest normal stress modified maximum shear stress occurs. Moreover, the same as in the shear plan criterion, the shear stress all over the shear band should exceed the shear yield strength of the material. For a complete shear band to form, both requirements need to be fulfilled. The shear yield strength of the material is represented by the shear stress of the point at which the shear band stops. The new criterion agrees very well with experimental results in both the determination of the shear yield strength and the shear band path. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nano-fibrillar adhesives can adhere strongly to surfaces as a gecko does. The size of each fiber has significant effects on the adhesion enhancement, especially on rough surfaces. In the present study, we report the size effects on the normal and shear strength of adhesion for a single viscoelastic fiber. It is found that there exists a limited region of the critical sizes under which the interfacial normal or tangential tractions uniformly attain the theoretical adhesion strength. The region for a viscoelastic fiber under tension with similar material constants to a gecko's spatula is 135-255 nm and that under torque is 26.5-52 nm. This finding is significant for the development of artificial biomimetic attachment systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma in the air is successfully induced by a free-oscillated Nd:YAG laser pulse with a peak power of 10(2-3) W. The initial free electrons for the cascade breakdown process are from the ablated particles from the surface of a heated coal target, likewise induced by the focused laser beam. The laser field compensates the energy loss of the plasma when the corresponding temperature and the images are investigated by fitting the experimental spectra of B-2 Sigma(+) -> X-2 Sigma(+) band of CN radicals in the plasma with the simulated spectra and a 4-frame CCD camera. The electron density is estimated using a simplified Kramer formula. As this interaction occurs in a gas mixture of hydrogen and oxygen, the formation and development of the plasma are weakened or restrained due to the chaining branch reaction in which the OH radicals are accumulated and the laser energy is consumed. Moreover, this laser ignition will initiate the combustion or explosion process of combustible gas and the minimum ignition energy is measured at different initial pressures. The differences in the experimental results compared to those induced by a nanosecond Q-switched laser pulse with a peak power of 10(6-8) W are also discussed. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Controlled vertical drying deposition method was used to make high-quality single crystal close-packed colloidal films formed of different radii polystyrene latex spheres on glass substrates coming from a low concentration water suspension (0.1% volume fraction). Regardless of the spheres radii the film thickness was about 6.3 microns. However, cracks destroyed the crystalline film structure during the colloidal film growth. The effect of particle radius (85-215 nm range) on film cracking was systematically studied using in situ optical fracture monitoring. Primary parallel cracks run along the vertical growth direction, later followed by secondary branched cracks in-between the primary cracks due to residual water evaporation. Quantitative theoretical relationship between the cracks spacing and particles radius was derived and shows good agreement with experimental observations. Normalized cracks spacing is related to a reciprocal ratio of the dimensionless particle radius.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper the influence of contact geometry, including the round tip of the indenter and the roughness of the specimen, on hardness behavior for elastic plastic materials is studied by means of finite element simulation. We idealize the actual indenter by an equivalent rigid conic indenter fitted smoothly with a spherical tip and examine the interaction of this indenter with both a flat surface and a rough surface. In the latter case the rough surface is represented by either a single spherical asperity or a dent (cavity). Indented solids include elastic perfectly plastic materials and strain hardening elastic-plastic materials, and the effects of the yield stress and strain hardening index are explored. Our results show that due to the finite curvature of the indenter tip the hardness versus indentation depth curve rises or drops (depending on the material properties of the indented solids) as the indentation depth decreases, in qualitative agreement with experimental results. Surface asperities and dents of curvature comparable to that of the indenter tip can appreciably modify the hardness value at small indentation depth. Their effects would appear as random variation in hardness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objectives of this paper are to study the thermodynamic cycles in an inertance tube pulse tube refrigerator (ITPTR) by means of CFD method The simulation results show that gas parcels working in different parts of ITPTR undergo different thermodynamic cycles The net effects of those thermodynamic cycles are pumping heat from the low temperature part to the high temperature part of the system The simulation results also show that under different frequencies of piston movement the gas parcels working in the same part of the system will undergo the same type of thermodynamic cycles The simulated thermal cycles are compared with those thermodynamic analysis results from a reference Comparisons show that both CFD simulations and theoretical analysis predict the same type of thermal cycles at the same location However only CFD simulation can give the quantitative results while the thermodynamic analysis is still remaining in quality (C) 2010 Elsevier Ltd All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within an isospin- and momentum-dependent hadronic transport model, it is shown that the recent FOPI data on the pi(-)/pi(+) ratio in central heavy-ion collisions at SIS/GSI energies [Willy Reisdorf , Nucl. Phys. A 781, 459 (2007)] provide circumstantial evidence suggesting a rather soft nuclear symmetry energy E-sym(rho) at rho >= 2 rho(0) compared to the Akmal-Pandharipande-Ravenhall prediction. Some astrophysical implications and the need for further experimental confirmations are discussed.