132 resultados para GRAPHITE-EPOXY COMPOSITE ELECTRODE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reagentless amperometric hydrogen peroxide biosensor was developed. Horseradish peroxidase (HRP) was immobilized in a novel sol-gel organic-inorganic hybrid matrix that is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP). Tetrathiafulvalene (TTF) was employed as a mediator and could lower the operating potential to -50 mV (versus Ag/AgCl). The sensor achieved 95% of the steady-state current in 15 s. Linear calibration for hydrogen peroxide was up to 1.3 mM with the detection limit of 2.5 x 10(-7)M. The enzyme electrode retained about 94% of its initial activity after 30 days of storage in a dry state at 4 degreesC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) [Ru(bpy)(3)(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)(3)(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 mu mol L-1 for oxalate, TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L-1 for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption and oxidation of yeast RNA and herring sperm DNA (HS DNA) at glass carbon (GC) electrode are studied by differential pulse voltammetry (DPV) and in situ FTIR spectroelectrochemistry. Two oxidation peaks of yeast RNA are obtained by DPV, whose peak potentials shift negatively with increasing pH. The peak currents decrease gradually in successive scans and no corresponding reduction peaks occur, thus indicating that the oxidation process of yeast RNA is completely irreversible. The IR bands in the 1200-1800 cm-l range, attributed to the stretching and ring vibrations of nucleic acid bases, show the main spectral changes when the potential is shifted positively, which gives evidence that the oxidation process takes place in the base residues. The oxidation process of HS DNA is similar to that of yeast RNA. The results both from DPV and in situ FTIR spectroelectrochemistry confirm that the guanine and adenine residues can be oxidized at the electrode surface, which is consistent with the oxidation mechanism of nucleic acids proposed previously. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrathin multilayer films of a polybasic lanthanide heteropoly tungstate-molybdate complex and a cationic polymer of quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) have been fabricated on a gold electrode precoated with a cysteamine self-assembled monolayer. The multilayer films have been characterized by optical spectroscopy, small-angle X-ray diffraction, and electrochemical methods (cyclic voltammetry and electrochemical impedance). Especially, the electrochemical impedance spectroscopy is developed to monitor the layer deposition processes. It provides important information such as double-layer capacitance and charge-transfer resistance. All obtained results reveal regular film growth with each layer adsorption. (C) 2001 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-stoichiometric mixed-valent molybdenum(VI, V) oxide film was grown on carbon substrates by the electrodeposition method. Responses of the prepared molybdenum oxide thin films to potential and to different solution acidities were studied by cyclic voltammetry, and the corresponding morphological changes of the film were monitored by atomic force microscopy (AFM). AFM images of the molybdenum oxide film show that the characteristic domed structure on the film surface increased during the transition from the oxidized state to the reduced state without signification change in the KMS surface roughness value. Furthermore, AFM studies show that the solution acidity has great effect on the morphology of the films, and the films undergo a homogenizing process with increasing pH of the solutions. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel functionalized inorganic-organic hybrid material with cation exchange property was prepared by sol-gel method. The H2O2 biosensor was fabricated by simply dipping the horseradish peroxidase-containing functionalized membrane modified electrode into Meldola's blue (MDB) solution. MDB was adsorbed and firmly immobilized within the membrane. The electrochemical behavior of MDB incorporated in the membrane was more reversible compared with that of the solution species and suitable as mediator for the horseradish peroxidase. The response time was less than 25 s. Linear range is up to 0.6 mM (COH. coeff. 0.9998) with detection Limit of 9 x 10(-7) M. High sensitivity of 75 nA mu M cm(-2) was obtained due to high MDB-loading. The biosensor exhibited a good stability. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical method to estimate temperature distribution during the cure of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based composite is suggested. The effect of the temperature distribution on the selection of cure cycle is evaluated using a suggested alternation criterion. The effect of varying heating rate and thickness on the temperature distribution, viscosity distribution and distribution of the extent of cure reaction are discussed based on the combination of the here-established temperature distribution model and the previously established curing kinetics model and chemorheological model. It is found that, for a thin composite (<=10mm) and low heating rate (<=2.5K/min), the effect of temperature distribution on cure cycle and on the processing window for pressure application can be neglected. Low heating rate is of benefit to reduce the temperature gradient. The processing window for pressure application becomes narrower with increasing thicknesses of composite sheets. The validity of the temperature distribution model and the modified processing window is evaluated through the characterization of mechanical and physical properties of E-PEK-based composite fabricated according to different temperature distribution conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ electrochemical scanning tunneling microscopy (ECSTM) and an electrochemical quartz crystal microbalance (EQCM) have been employed to follow the adsorption/desorption processes of phenanthraquinone (PQ sat. in 0.1 mol l(-1) HClO4, solution) accompanied with an electrochemical redox reaction on the Au electrode. The result shows that: (1) the reduced form PQH(2) adsorbed at the Au electrode and the desorption occurred when PQH(2) was oxidized to PQ; (2) the adsorption process initiates at steps or kinks which provide high active sites on the electrode surface for adsorption, and as the potential shifts to negative, a multilayer of PQH(2) may be formed at the Au electrode; (3) the reduced PQH(2) adsorbed preferentially in the area where the tip had been scanned continually; this result suggests that the tip induction may accelerate the adsorption of PQH(2) on the Au(111) electrode. Two kinds of possible reason have been discussed; (4) high resolution STM images show the strong substrate lattice information and the weak monolayer adsorbate lattice information simultaneously. The PQH(2) molecules pack into a not perfectly ordered condensed physisorbed layer at potentials of 0.1 and 0.2 V with an average lattice constant a = 11.5 +/- 0.4 Angstrom, b = 11.5 +/- 0.4 Angstrom, and gamma = 120 +/- 2 degrees; the molecular lattice is rotated with respect to the substrate lattice by about 23 +/- 2 degrees. (C) 1997 Elsevier Science S.A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The curing temperature, pressure, and curing time have significant influence on finished thermosetting composite products. The time of pressure application is one of the most important processing parameters in the manufacture of a thermosetting composite. The determination of the time of pressure application relies on analysis of the viscosity variation of the polymer, associated with curing temperature and curing time. To determine it, the influence of the time of pressure application on the physical properties of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based continuous carbon fiber composite was studied. It was found that a stepwise temperature cure cycle is more suitable for manufacture of this composite. There are two viscosity valleys, in the case of the E-PEK system, associated with temperature during a stepwise cure cycle. The analysis on the effects of reinforcement fraction and defect content on the composite sheet quality indicates that the width-adjustable second viscosity valley provides a suitable pressing window. The viscosity, ranging from 400 to 1200 Pa . s at the second viscosity valley, is the optimal viscosity range for applying pressure to ensure appropriate resin flow during curing process, which enables one to get a finished composite with optimal fiber volume fraction and low void content. (C) 1997 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epoxy-terminated poly(phenylene ether ketone) (E-PEK) developed in this Institute is a candidate matrix resin for polymer composites as structural materials. Cure cycles for this reaction system were simulated according to the previously established processing model. It is found that for the E-PEK system, the curing process is best completed by a stepwise cure cycle comprising two isothermal processes at different temperatures, T-1 and T-2. The cure cycles over a wide range of processing parameters simulated, based on the established processing model, indicate that the processing window is width-adjustable. Analysis of the mechanical properties of the composite sheets showed that the simulated cure cycles are acceptable and reliable. (C) 1997 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A special electrodeposition process of palladium was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and in situ scanning tunneling microscopy (STM). A kind of palladium(IV) complex was attached to the highly oriented pyrolytic graphite (HOPG) electrode surface by electro-oxidation of palladium(II) complex first, and was then reduced to palladium particles. The surface complexes and particles of palladium were both characterized by in situ STM and XPS. The Pd particles are in the nanometer range of size and exhibit electrocatalytic activity towards the oxidation of hydrazine and hydroxylamine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly ordered single crystal carbon material, highly oriented pyrolytic graphite (HOPG) has been successfully employed as a working electrode in an electrochemical quartz crystal microbalance study. RTV silicone rubber is selected to adhere the HOPG film onto the quartz crystal surface. Such modified quartz crystal can oscillate with stable frequency. The electrode modified in this way has good electrochemical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ electrochemical scanning tunneling microscopy (ECSTM) has been employed to follow the renewal process of a graphite electrode accompanied by flavin adenine dinucleotide (FAD) electrochemical reaction which involves adsorption of the reduced form (FADH(2)) and desorption of the oxidized form (FAD). The renewal process initiates from steps or kinks on the electrode surface, which provide high active sites for adsorption. This renewal depends on the working electrode potential, especially in the range near the FAD redox potential. Our experiment suggests that delamination of the graphite surface is caused by interaction between the substrate and adsorbed molecules. A simple model is proposed to explain this phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose oxidase can be effectively adsorbed onto the polypyrrole(PPy) thin film electrochemically formed on an anodized galssy carbon electrode(GCEa). Direct electron communication between the redox of GOD and the modified electrode was successfully achieved, which was detected using cyclic voltammetry. GOD entrapped in PPy film still remained its biological activity and could catalyze the oxidation of glucose. As a third generation biosensor, GOD-PPy/GCEa responded linearly up to 20 mM glucose with a wider linear concentration range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ex situ and in situ STM characterization of the electrode materials, including HOPG, GC, Au, Pt and other electrodes, is briefly surveyed and critically evaluated. The relationship between the electrode activity and surface microtopography is discussed.