571 resultados para Escritas de si


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the couplings between different energy band valleys in a metal-oxide-semiconductor field-effect transistor (MOSFET) device using self-consistent calculations of million-atom Schrodinger-Poisson equations. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. The MOSFET device is under nonequilibrium condition with a source-drain bias up to 2 V and a gate potential close to the threshold potential. We find that all the intervalley couplings are small, with the coupling constants less than 3 meV. As a result, the system eigenstates derived from different bulk valleys can be calculated separately. This will significantly reduce the simulation time because the diagonalization of the Hamiltonian matrix scales as the third power of the total number of basis functions. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

10 mu m-thick ultra-thin Si (111) membranes for GaN epi-layers growth were successfully fabricated on silicon-on-insulator (SOI) substrate by backside etching the handle Si and buried oxide (BOX) layer. Then 1 mu m-thick GaN layers were deposited on these Si membranes by metal-organic chemical vapor deposition (MOCVD). The crack-free areas of 250 mu m, x 250 mu m were obtained on the GaN layers due to the reduction of thermal stress by using these ultra-thin Si membranes, which was further confirmed by the photoluminescence (PL) spectra and the simulation results from the finite element method calculation by using the software of ANSYS. In this paper, a newly developed approach was demonstrated to utilize micromechanical structures for GaN growth, which would improve the material quality of the epi-layers and facilitate GaN-based micro electro-mechanical system (MEMS) fabrication, especially the pressure sensor, in the future applications. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality Ge epilayer on Si(1 0 0) substrate with an inserted low-temperature Ge seed layer and a thin Si0.77Ge0.23 layer was grown by ultrahigh vacuum chemical vapor deposition. The epitaxial Ge layer with surface root-mean-square roughness of 0.7 nm and threading dislocation density of 5 x 10(5) cm(-2) was obtained. The influence of low temperature Ge seed layer on the quality of Ge epilayer was investigated. We demonstrated that the relatively higher temperature (350 degrees C) for the growth of Ge seed layer significantly improved the crystal quality and the Hall hole mobility of the Ge epilayer. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using ab initio electronic structure calculations within density functional theory, we study the structural, electronic, and magnetic properties of Si doped with a transition metal impurity. We consider the transition metals of the 3d series V, Cr, Mn, Fe, Co, and Ni. To get insight into the level filling mechanism and the magnetization saturation, we first investigate the transition metal-Si alloys in the zinc-blende structure. Next, we investigate the doping of bulk Si with a transition metal atom, in which it occupies the substitutional site, the interstitial site with tetrahedral symmetry, and the interstitial site with hexagonal symmetry. It is found that all of these transition metal impurities prefer an interstitial position in Si. Furthermore, we show that it is possible to interpret the electronic and magnetic properties by using a simple level filling picture and a comparison is made to Ge doped with the same transition metal atoms. In order to get insight into the effect of a strained environment, we calculate the formation energy as a function of an applied homogeneous pressure and we show that an applied pressure can stabilize the substitutional position of transition metal impurities in Si. Finally, the energies of the ferromagnetic states are compared to those of the antiferromagnetic states. It is shown that the interstitial site of the Mn dopant helps us to stabilize the nearest neighbor substitutional site to realize the ferromagnetic state. For doping of Si with Cr, a ferrimagnetic behavior is predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical modulator is designed and fabricated based on a Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetrical superlattice structure. The device comprises a p-i-n diode made on the asymmetrical superlattice integrated with a 920-mu m-long Fabry-Perot (F-P) cavity. Parameters of the rib waveguide are designed to satisfy only the fundamental-TE mode transmission. Here, 65 and 40-pm red shifts of the peak resonant were measured under the applied bias of 2.5 and -32.0 V, respectively. The analysis shows that, besides the thermal-optical and plasma dispersion effects, the Pockels effect also contributes to such a peak shift. The corresponding calculated effective Pockels coefficient is about 0.158 pm/V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering tensile-strained p-type Si/Si1-yGey quantum wells grown on a relaxed Si1-xGex ( 0 0 1) virtual substrate ( y < x), the hole subband structure and the effective masses of the first bound hole state in the quantum wells are calculated by using the 6 x 6 k center dot p method. Designs for tensile-strained p-type quantum well infrared photodetectors ( QWIPs) based on the bound-to-quasi-bound transitions are discussed, which are expected to retain the ability of coupling normally incident infrared radiation without any grating couplers, have lower dark current than n-type QWIPs and also have a larger absorption coefficient and better transport characteristics than normal unstrained or compressive-strained p-type QWIPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crack-free GaN films have been achieved by inserting an Indoped low-temperature (LT) AlGaN interlayer grown on silicon by metalorganic chemical vapor deposition. The relationship between lattice constants c and a obtained by X-ray diffraction analysis shows that indium doping interlayer can reduce the stress in GaN layers. The stress in GaN decreases with increasing trimethylindium (TMIn) during interlayer growth. Moreover, for a smaller TMIn flow, the stress in GaN decreases dramatically when In acts as a surfactant to improve the crystallinity of the AlGaN interlayer, and for a larger TMIn flow, the stress will increase again. The decreased stress leads to smoother surfaces and fewer cracks for GaN layers by using an In-doped interlayer than by using an undoped interlayer. In doping has been found to enhance the lateral growth and reduce the growth rate of the c face. It can explain the strain relief and cracks reduction in GaN films. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si-based photonic materials and devices, including SiGe/Si quantum structures, SOI and InGaAs bonded on Si, PL of Si nanocrystals, SOI photonic crystal filter, Si based RCE (Resonant Cavity Enhanced) photodiodes, SOI TO (thermai-optical) switch matrix were investigated in Institute of Serniconductors, Chinese Academy of Sciences. The main results in recent years are presented in the paper. The mechanism of PL from Si NCs embedded in SiO2 matrix was studied, a greater contribution of the interface state recombination (PL peak in 850 similar to 900 nm) is associated with larger Si NCs and higher interface state density. Ge dots with density of order of 10(11) cm(-2) were obtained by UHV/CVD growth and 193 nm excimer laser annealing. SOI photonic crystal filter with resonant wavelength of 1598 nm and Q factor of 1140 was designed and made. Si based hybrid InGaAs RCE PD with eta of 34.4% and FWHM of 27 nut were achieved by MOCVD growth and bonding technology between InGaAs epitaxial and Si wafers. A 16x16 SOI optical switch matrix were designed and made. A new current driving circuit was used to improve the response speed of a 4x4 SOI rearrangeable nonblocking TO switch matrix, rising and failing time is 970 and 750 ns, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-crystalline Si/SiO2 multilayers were prepared by alternately changing the ultra-thin amorphous Si film deposition and the in situ plasma oxidation process followed by the post-annealing treatments. Well-defined periodic structures can be achieved with 2.5 nm thick SiO2 sublayers. It is shown that the size of formed nano-crystalline Si is about 3 nm. Room temperature electroluminescence can be observed and the spectrum contains two luminescence bands located at 650 nm and 520 nm. In order to improve the hole injection probability, p-i-n structures containing a nanocrystalline Si/SiO2 luminescent layer were designed and fabricated on different p-type substrates. It is found that the turn-on voltage of p-i-n structures is obviously reduced and the luminescence intensity increases by 50 times. It is demonstrated that the use of a heavy-doped p-type substrate can increase the luminescence intensity more efficiently compared with the light-doped p-type substrate due to the enhanced hole injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum nitride (AIN) thin films were deposited on Si (111) substrates by low pressure metalorganic chemical vapor deposition system. The effects of the V/III ratios on the film structure and surface morphology were systematically studied. The chemical states and vibration modes of AIN films were characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer. The optical absorption property of the AIN films, characterized by ultraviolet-visible-near infrared spectrophotometer, exhibited a sharp absorption near the wavelength of 206 mm. The AIN (002) preferential orientation growth was obtained at the V/III ratio of 10,000 and the preferential growth mechanism is presented in this paper according to the thermodynamics and kinetics process of the AIN growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ZnO films were grown on Ag/Si(001) substrates by sputtering Ag and ZnO targets successively in a pure Ar ambient. A significant enhancement of ZnO ultraviolet emission and a reduction of its full width of half maximum have been observed while introducing a 100 nm Ag interlayer between ZnO film and Si substrate. Furthermore, a complete suppression of the defect related visible emission was also found for the ZnO/Ag/Si sample. This improved optical performance of ZnO is attributed to the resonant coupling between Ag surface plasmon and ultraviolet emission of ZnO. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Ge/Si heterojunction light emitting diode with a p(+)-Ge/i-Ge/N+-Si structure was fabricated using the ultrahigh vacuum chemical vapor deposition technology on N+-Si substrate. The device had a good I-V rectifying behavior. Under forward bias voltage ranging from 1.1 to 2.5 V, electroluminescence around 1565 nm was observed at room temperature. The mechanism of the light emission is discussed by the radiative lifetime and the scattering rate. The results indicate that germanium is a potential candidate for silicon-based light source material. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3216577]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-step approach of preparation for SiGe/Si heterogeneous nanostructures, which combined with ultra-high vacuum chemical deposition and electrochemical anodization techniques, is demonstrated. Uniformly distributed nanostructures with a quite uniform distribution of size and morphology are obtained. A strong room-temperature photoluminescence from the nanostructures was observed with a narrow full-width at half-maximum of around 110 meV. The possible origins of the two main peaks at around 1.6 and 1.8 eV have been discussed in detail. The two-step approach is proved to be a promising method to fabricate new Si-based optoelectronic materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A close relationship is found between the blue and yellow luminescence bands in n-type GaN films, which are grown without intentional acceptor doping. The intensity ratio of blue luminescence to yellow luminescence (I-BL/I-YL) decreases with the increase in edge dislocation densities as demonstrated by the (102) full width at half maximum of x-ray diffraction. In addition, the I-BL/I-YL ratio decreases with the increase in Si doping. It is suggested that the edge dislocation and Si impurity play important roles in linking the blue and yellow luminescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding. A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure. When electrically pumped at room temperature, the laser operates with a threshold current density of 2.9 kA/cm(2) and a slope efficiency of 0.02 W/A. The 1542 nm laser output exits mainly from the Si waveguide.