226 resultados para Coupled Logistic map lattices
Resumo:
We show that grey solitons, grey-grey soliton pairs, and multi-component grey solitons can be realized in two-photon photorefractive media. The results for soliton pairs and multi-component solitons are derived under the assumption that the carrier beams share the same polarization, wavelength, and are mutually incoherent.
Resumo:
The relationship between liquid crystal orientational ordering and optical diffraction properties is investigated for a two-dimensional square photonic lattice fabricated in a polymer-dispersed liquid crystal (PDLC) composite. Modifications of the nematic director field in the liquid crystal domains were induced by an external applied voltage and by heating over the nematic-isotropic (N-I) phase transition. They were studied by optical polarization microscopy and by analysing far-field optical diffraction patterns. The intensities of various diffraction orders (from the zeroth up to the eighth diffraction order) were monitored with a CCD camera, and their variations were correlated with the modifications of the director field.
Resumo:
P>Common carp (Cyprinus carpio) is an important fish for aquaculture, but genomics of this species is still in its infancy. In this study, a linkage map of common carp based on Amplified Fragment Length Polymorphism (AFLP) and microsatellite (SSR) markers has been generated using gynogenetic haploids. Of 926 markers genotyped, 151 (149 AFLPs, two SSRs) were distorted and eliminated from the linkage analyses. A total of 699 AFLP and 20 microsatellite (SSR) markers were assigned to the map, which comprised 64 linkage groups and covered 5506.9 cM Kosambi, with an average interval distance of 7.66 cM Kosambi. The normality tests on interval map distances showed a non-normal marker distribution. Visual inspection of the map distance distribution histogram showed a cluster of interval map distances on the left side of the chart, which suggested the occurrence of AFLP marker clusters. On the other hand, the lack of an obvious cluster on the right side showed that there were a few big gaps which need more markers to bridge. The correlation analysis showed a highly significant relatedness between the length of linkage group and the number of markers, indicating that the AFLP markers in this map were randomly distributed among different linkage groups. This study is helpful for research into the common carp genome and for further studies of genetics and marker-assisted breeding in this species.
Resumo:
We present distinct evidence of anticrossing behavior for excitonic transitions due to resonant coupling of heavy-hole ground levels in a biased GaAs/Al0.35Ga0.65As/GaAs (50/40/100 angstrom) asymmetric coupled-double-quantum-wells p-i-n structure by using photoluminescence spectra. The minimum level splitting is about 2.5 meV.
Resumo:
The dielectric response of an electron system composed of an array of parallel quantum wires with weak coupling and strong coupling are studied, and the dispersions of the collective excitations and the single particle excitations (SPE) as functions of wave-vectors are given. It is found that for the nearly isolated quantum wires with several subbands occupation, there are a series of intra-subband collective excitations between corresponding intra-subband SPE spectra. There also exist inter-subband collective excitations when q(x) not equal 0 (q(x) is the wave-vector component in the modulation direction), whose energies are close by the corresponding inter-subband SPE spectra. The energy of the intra-subband mode decreases and that of inter-subband mode increases with q(x) increasing. The collective excitation dispersions show obvious anisotropy in the 1D quantum limit. The calculated results agree with the experiment well. The coupling between quantum wires affects markedly both the collective and single-particle excitations spectra. The system changes to a near-two-dimensional electron system gradually with increasing coupling.
Resumo:
The dielectric response of a modulated three-dimensional electron system composed of a periodic array of quantum wells with weak coupling and strong coupling are studied, and the dispersions of the collective excitations and the single particle excitations as functions of wave vectors are given. It is found that for the nearly isolated multiple-quantum-well case with several subbands occupation, there is a three-dimensional-like plasmon when q(z)=0 (q(z) is the wave-vector component in the superlattice axis). There also exist intersubband collective excitations in addition to one intra-subband mode when q(z) not equal 0. The intra-subband mode has a linear dispersion relation with q(//) (the wave-vector component perpendicular to the superlattice axis) when q(//) is small. The inter-subband modes cover wider ranges in q(//) with increasing values of q(z). The energies of inter-subband collective excitations are close by the corresponding inter-subband single-particle excitation spectra. The collective excitation dispersions show obvious anisotropy in the 2D quantum limit. The calculated results agree with the experiment. The coupling between quantum wells affects markedly both the collective excitations and the single particle excitations spectra. The system shows gradually a near-three-dimensional electron gas character with increasing coupling. Copyright (C) 1996 Published by Elsevier Science Ltd
Structures of an asymmetrically coupled double-well superlattice by double-crystal X-ray diffraction
Resumo:
An asymmetrically coupled (GaAs/AlAs/GaAs/AlAs)/GaAs (001) double-well supperlattice is studied by HRDCD (high resolution double-crystal X-ray diffractometry). The intensity of satellite peaks is modulated by wave packet of different sublayers. In the course of simulation, the satellite peaks in the vicinity of the node points of wave packet are very informative for precise determination of sublayer thickness and for improving accuracy.
Resumo:
In the framework of effective mass envelope function theory, absorption coefficients are calculated for intraband (intersubband in the conduction band) optical transition in InAs/GaAs coupled quantum dots. In our calculation the microscpic distributon of the strain is taken into account. The absorption in coupled quantum dots is quite different from that of superlattices. In superlattices, the absorption does not exist when the electric vector of light is parallel to the superlattice plane (perpendicular incident). This introduces somewhat of a difficulty in fabricating the infrared detector. In quantum dots, the absorption exists when light incident along any direction, which may be good for fabricating infrared detectors.
Resumo:
We explore the possibility of a quantum directional coupler based on Pi-shaped coupled electron waveguides with smooth boundaries. By calculating the transmission spectra, we propose an optimized coupler structure with a high directivity and fine uniformity. The coupler specifications, directivity, uniformity, and coupling coefficient are evaluated.
Resumo:
In the framework of effective-mass envelope-function theory, the optical transitions of InAs/GaAs strained coupled quantum dots grown on GaAs (100) oriented substrates are studied. At the Gamma point, the electron and hole energy levels, the distribution of electron and hole wave functions along the growth and parallel directions, the optical transition-matrix elements, the exciton states, and absorption spectra are calculated. In calculations, the effects due to the different effective masses of electrons and holes in different materials are included. Our theoretical results are in good agreement with the available experimental data.