182 resultados para reduced equation
Resumo:
This paper studies the security of the block ciphers ARIA and Camellia against impossible differential cryptanalysis. Our work improves the best impossible differential cryptanalysis of ARIA and Camellia known so far. The designers of ARIA expected no impossible differentials exist for 4-round ARIA. However, we found some nontrivial 4-round impossible differentials, which may lead to a possible attack on 6-round ARIA. Moreover, we found some nontrivial 8-round impossible differentials for Camellia, whereas only 7-round impossible differentials were previously known. By using the 8-round impossible differentials, we presented an attack on 12-round Camellia without FL/FL 1 layers.
Resumo:
IEEE Computer Society
Resumo:
A novel edge-triggered D-flip-flop based on a resonant tunneling diode (RTD) is proposed and used to construct a binary frequency divider. The design is discussed in detail and the performance of the circuit is verified using SPICE. Relying on the nonlinear characteristics of RTD, we reduced the number of components used in our DFF circuit to only half of that required using conventional CMOS SCFL technology.
Resumo:
Nonlinear wave equation for a one-dimensional anharmonic crystal lattice in terms of its microscopic parameters is obtained by means of a continuum approximation. Using a small time scale transformation, the nonlinear wave equation is reduced to a combined KdV equation and its single soliton solution yields the supersonic kink form of nonlinear elastic waves for the system.
Resumo:
Theories of wetting of liquids on solid surfaces under the condition that van der Waals force is dominant are briefly reviewed. We show theoretically that Zisman's empirical equation for wetting of liquids on solid surfaces is a linear approximation of the Young-van der Waals equation in the wetting region, and we express the two parameters in Zisman's empirical equation in terms of the dielectric polarizabilities of the solid and liquids. The materials contained in this paper are suitable for physics teaching of wetting phenomena for undergraduate, graduate, general physicist, etc.
Resumo:
The diffusive transport properties in microscale convection flows are studied by using the direct simulation Monte Carlo method. The effective diffusion coefficient D is computed from the mean square displacements of simulated molecules based on the Einstein diffusion equation D = x2 t /2t. Two typical convection flows, namely, thermal creep convection and Rayleigh– Bénard convection, are investigated. The thermal creep convection in our simulation is in the noncontinuum regime, with the characteristic scale of the vortex varying from 1 to 100 molecular mean free paths. The diffusion is shown to be enhanced only when the vortex scale exceeds a certain critical value, while the diffusion is reduced when the vortex scale is less than the critical value. The reason for phenomenon of diffusion reduction in the noncontinuum regime is that the reduction effect due to solid wall is dominant while the enhancement effect due to convection is negligible. A molecule will lose its memory of macroscopic velocity when it collides with the walls, and thus molecules are hard to diffuse away if they are confined between very close walls. The Rayleigh– Bénard convection in our simulation is in the continuum regime, with the characteristic length of 1000 molecular mean free paths. Under such condition, the effect of solid wall on diffusion is negligible. The diffusion enhancement due to convection is shown to scale as the square root of the Péclet number in the steady convection regime, which is in agreement with previous theoretical and experimental results. In the oscillation convection regime, the diffusion is more strongly enhanced because the molecules can easily advect from one roll to its neighbor due to an oscillation mechanism. © 2010 American Institute of Physics. doi:10.1063/1.3528310