416 resultados para ion trapping
Resumo:
The Ga1-xMnxSb samples were fabricated by the implantation of Mn ions into GaSb (1 0 0) substrate with mass-analyzed low-energy dual ion beam deposition system, and post-annealing. Auger electron spectroscopy depth profile of the Ga1-xMnxSb samples showed that the Mn ions were successfully implanted into GaSb substrate. Clear double-crystal X-ray diffraction patterns of the Ga1-xMnxSb samples indicate that the Ga1-xMnxSb epilayers have the zinc-blende structure without detectable second phase. Magnetic hysteresis-loop of the Ga1-xMnxSb epilayers were obtained at room temperature (293 K) with alternating gradient magnetometry. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High-dose ion implantation of phosphorus into 4H-SiC (0001) has been investigated with three different ion fluxes ranging from 1.0 to 4.0 x 10(12) P(+)cm(-2.)s(-1) and keeping the implantation dose constant at 2.0 x 10(15) P(+)cm(-2). The implantations are performed at room temperature and subsequently annealed at 1500 degrees C. Photoluminescence and Raman scattering are employed to investigate the implantation-induced damages and the residual defects after annealing. The electrical properties of the implanted layer are evaluated by Hall effect measurements on the sample with a van der Pauw configuration. Based on these results, it is revealed that the damages and defects in implanted layers can be greatly reduced by decreasing the ion flux. Considering room temperature implantation and a relatively low annealing temperature of 1500 degrees C, a reasonably low sheet resistance of 106 Omega/square is obtained at ion flux of 1.0 x 10(12) P(+)cm(-2.)s(-1) with a donor concentration of 4.4 x 10(19)cm(-3).
Resumo:
Mn ions were implanted to n-type Si(0 0 1) single crystal by low-energy ion beam deposition technique with an energy of 1000 eV and a dose of 7.5 x 10(17) cm(-2). The samples were held at room temperature and at 300degreesC during implantation. Auger electron spectroscopy depth profiles of samples indicate that the Mn ions reach deeper in the sample implanted at 300degreesC than in the sample implanted at room temperature. X-ray diffraction measurements show that the structure of the sample implanted at room temperature is amorphous while that of the sample implanted at 300degreesC is crystallized. There are no new phases found except silicon both in the two samples. Atomic force microscopy images of samples indicate that the sample implanted at 300degreesC has island-like humps that cover the sample surface while there is no such kind of characteristic in the sample implanted at room temperature. The magnetic properties of samples were investigated by alternating gradient magnetometer (AGM). The sample implanted at 300degreesC shows ferromagnetic behavior at room temperature. (C) 2004 Elsevier BN. All rights reserved.
Resumo:
The preparation of metal alloy and monoelemental nanoclusters in silica by Ag, Cu ion sequential implantation and annealing in selected oxidizing or reducing atmosphere is studied. The formation of metastable Ag-Cu alloy is verified in the as-implanted samples by optical absorption spectra, selected area electron diffraction and energy dispersive spectrometer spectrum. The alloy is discomposed at elevated annealing temperature in both oxidizing and reducing atmospheres. The different effects of annealing behaviors on the Ag Cu alloy nanoclusters are investigated. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we introduced the fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam machine, it shows that the method of focused-ion beam can fabricate two-dimensional photonic crystal and photonic crystal device efficiently, and the quality of the fabricated photonic crystal is high. Using the focused-ion beam method, we fabricate photonic crystal wavelength division multiplexer, and its characteristics are analyzed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A method of manufacturing two-dimensional photonic crystals on several kinds of semiconductor materials in near infrared region by a focused ion beam is introduced, and the corresponding fabrication results are presented and show that the obtained parameters of fabricated photonic crystals are identical with the designed ones. Using the tunable laser source, the spectra of the fabricated passive photonic crystal and the active photonic crystal are measured. The experiment demonstrates that the focused ion-beam can be used to fabricate the perfect two-dimensional photonic crystals and their devices.
Resumo:
Titanium and zirconia are bioinert materials lacking bioactivity. In this work, surface modification of the two typical biomaterials is conducted by Mg-ion-implantation using a MEVVA ion source in an attempt to increase their bioactivity. Mg ions were implanted into zirconia and titanium with fluences ranging from 1 x 10(17) to 3 x 10(17) ions/cm(2) at 40 keV. The Mg-implanted samples, as well as control (unimplanted) samples, were immersed in SBF for 7 days and then removed to identify the presence of calcium and phosphate (Ca-P) coatings and to characterize their morphology and structure by SEM, XRD, and FT-IR. SEM observations confirm that globular aggregates are formed on the surfaces of the Mg-implanted zirconia and titanium while no precipitates are observed on the control samples. XRD and FT-IR analyses reveal that the deposits are carbonated hydroxyapatite (HAp). Our experimental results demonstrate that Mg-implantation improves the bioactivity of zirconia and titanium. Further, it is found that the degree of bioactivity is adjustable by the ion dose. Mechanisms are proposed to interpret the improvement of bioactivity as a result of Mg implantation and the difference in bioactivity between zirconia and titanium. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The microstructural and optical analysis of Si layers emitting blue luminescence at about 431 nm is reported. These structures have been synthesized by C+ ion implantation and high-temperature annealing in hydrogen atmosphere and electrochemical etching sequentially. With the increasing etching time, the intensity of the blue peak increases at first, decreases then and is substituted by a new red peak at 716 nm at last, which shows characteristics of the emission of porous silicon. C=O compounds are induced during C+ implantation and nanometer silicon with embedded structure is formed during annealing, which contributes to the blue emission. The possible mechanism of photoluminescence is presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Raman scattering measurements have been carried out on ferromagnetic semiconductor Ga1-xMnxN prepared by Mn-ion implantation and post annealing. The Raman results obtained from the annealed and un-annealed Ga1-xMnxN demonstrate that crystalline quality has been improved in Ga1-xMnxN after annealing. Some new vibrational modes in addition to GaN-like modes are found in the Raman spectra measured from the Ga1-xMnxN where the GaN-like modes are found to be shifted in the higher frequency side than those measured from the bulk GaN. A new vibrational mode observed is assigned to MnN-like mode. Other new phonon modes observed are assigned to disorder-activated modes and Mn-related vibrational modes caused by Mn-ion implantation and post-annealing. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The micro-magnetic structures of Mn+ ion-implanted GaSb are studied using a magnetic force microscope (MFM). MFM images reveal that there are many magnetic domains with different magnetization directions in our samples. The magnetic domain structures and the magnetization direction of typical MFM patterns are analyzed by numeric simulation.
Resumo:
The (Ga,Mn,N) samples were grown by the implantation of low-energy Mn ions into GaN/Al2O3 substrate at different elevated substrate temperatures with mass-analyzed low-energy dual ion beam deposition system. Auger electron spectroscopy depth profile of samples grown at different substrate temperatures indicates that the Mn ions reach deeper in samples with higher substrate temperatures. Clear X-ray diffraction peak from (Ga,Mn)N is observed in samples grown at the higher substrate temperature. It indicates that under optimized substrate temperature and annealing conditions the solid solution (Ga,Mn)N phase in samples was formed with the same lattice structure as GaN and different lattice constant. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Carbon films with an open-ended structure were obtained by mass-selected ion-beam deposition technique at 800degreesC. Raman spectra show that these films are mainly sp(2)-bonded. In our case, threshold ion energy of 140 eV was found for the formation of such surface morphology. High deposition temperature and ion-beam current density are also responsible for the growth of this structure. Additionally, the growth mechanism of the carbon films is discussed in this article. It was found that the ions sputtered pits on the substrate in the initial stage play a key role in the tubular surface morphology. (C) 2002 American Vacuum Society.
Resumo:
Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The temperature dependence of photoluminescence (PL) from a-C:H film deposited by CH3+ ion beam has been performed and an anomalous behavior has been reported. A transition temperature at which the PL intensity, peak position and full width at the half maximum change sharply was observed. It is proposed that different structure units. at least three, are responsible for such behavior. Above the transition point. increasing temperature will lead to the dominance of non-radiative recombination process, which quenches the PL overall and preferentially the red part, Possible emission mechanisms have been discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Considering the complexity of the general plasma techniques, pure single CH3+ ion beams were selected for the deposition of hydrogenated amorphous (a) carbon films with various ion energies and temperatures. Photoluminescence (PL) measurements have been performed on the films and violet/blue emission has been observed. The violet/blue emission is attributed to the small size distribution of sp(2) clusters and is related to the intrinsic properties of CH3 terminals, which lead to a very high barrier for the photoexcited electrons. Ion bombardment plays an important role in the PL behavior. This would provide further insight into the growth dynamics of a-C:H films. (C) 2002 American Institute of Physics.