137 resultados para electron paramagnetic resonance
Resumo:
Polyvinyl alcohol amidoxime (PVAAO) chelate fiber prepared in our laboratory is a good adsorbent. Comparing with other adsorbents, it has many advantages, such as higher hydrophilicity, better adsorbability and easier synthesis. In this work, the synthesi
Resumo:
1:12 phosphomolybdic anion doped polypyrrole film electrode was characterized by in-situ UV-vis spectroelectrochemistry, X-ray photoelectron spectroscopy(XPS), scan electronic microscopy(SEM) and electron spin resonance(ESR) spectroscopy.
Resumo:
This paper studies gamma-radiation induced lamellar damage mechanism of poly(vinylidene fluoride), using wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), electronic paramagnetic resonance (EPR) and gel fraction determination. We believe that it is ''lamellae core damage'' rather than ''lamellae surface damage'' that results in the decrease of the crystallinity.
Resumo:
MoO3/Al2O3 is reduced at least partly by sulfur which is formed from H2S in sulfidation with H2S/N2 mixture. SO2 formation during TPD of MoO3/Al2O3 with presorbed H2S provides evidence for the explanation.
Resumo:
Manganese-modified mesoporous MCM-41 molecular sieves were synthesized at the absence of alkaline metal ions under mild alkaline condition using cetylpyridinium bromide surfactant as a template, and characterized with X-ray diffraction, N-2 adsorption, transmission electron microscopy, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) spectroscopies. The synthesized MnMCM-41 has a high pore volume of 1.30 cm(3) g(-1) with a corresponding surface area of 1510 m(2) g(-1). The ESR and Si-29 MAS NMR spectra revealed the presence of framework manganese ions in either the as-synthesized or calcined forms. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The properties of electron states in the presence of microwave irradiation play a key role in understanding the oscillations of longitudinal resistance and the zero-resistance states in a high-mobility two-dimensional electron gas(2DEG) in low magnetic field. The properties of electron states in a high-mobility and low-density GaAs/Al0.35Ga0.65As 2DEG in the presence of Ka-band microwave irradiation were studied by reflectance-based optically detected cyclotron resonance(RODCR). The influences of the direction of microwave alternating electronic field, wavelength of the laser, and temperature on RODCR results were discussed. The results show that RODCR measurements provide a convenient and powerful method for studying electron states in 2DEG.
Resumo:
A generalized scattering matrix formalism is constructed to elucidate the interplay of electron resonance, coherence, dephasing, inelastic scattering, and heterogeneity, which play important roles in the physics of long-range electron transfer/transport. The theory consists of an extension of the standard Buttiker phase-breaking model and an analytical expression of the electron transmission coefficient for donor-bridge-acceptor systems with arbitrary length and sequence. The theory incorporates the following features: Dephasing-assisted off-resonance enhancement, inelasticity-induced turnover, resonance enhancement and its dephasing-induced suppression, dephasing-induced smooth superexchange-hopping transition, and heterogeneity effects. (C) 2002 American Institute of Physics.
Resumo:
Cyclotron resonance (CR) of high density GaAs quantum wells exhibits well-resolved spin splitting above the LO-phonon frequency. The spin-up and spin-down CR frequencies are reversed relative to the order expected from simple band nonparabolicity. We demonstrate that this is a consequence of the blocking of the polaron interaction which is a sensitive function of the filling of the Landau levels.
Resumo:
We report on high magnetic fields (up to 40 T) cyclotron resonance, quantum Hall effect and Shubnikov-de-Hass measurements in high frequency transistors based on Si-doped GaN-AlGaN heterojunctions. A simple way of precise modelling of the cyclotron absorption in these heterojunctions is presented, We clearly establish two-dimensional electrons to be the dominant conducting carriers and determine precisely their in-plane effective mass to be 0.230 +/- 0.005 of the free electron effective mass. The increase of the effective mass with an increase of two-dimensional carrier density is observed and explained by the nonparabolicity effect. (C) 1997 American Institute of Physics.
Resumo:
Procedures that allow the realization of resonance electron capture (REC) mode on a commercial triple-quadrupole mass spectrometer, after some simple modifications, are described, REC mass spectrometry (MS) and tandem mass spectrometry (MS/MS) experiments were performed and spectra for some compounds were recorded. In particular, the charge-remote fragmentation (CRF) spectra of [M - H](-) ions of docosanoic and docosenoic acids under low-energy collisionally activated dissociation (CAD) conditions were obtained, and showed that there were no significant differences for [M - H](-) ions produced at different resonances (i,e. for [M - H](-) ions with different structures). This observation was explained on the basis of results obtained from deuterium-labeled fatty acids, which showed that different CRF ions (but with the same m/z value in the absence of labels) could be produced by different mechanisms, and all of them were obviously realized under CAD conditions that made spectra practically indistinguishable. The other example, which compared the REC-MS/MS spectrum of [M - H](-) ions and EI-MS/MS spectrum of M+. ions of daidzein, demonstrated the potential of the REC-MS/MS technique for more complex structure elucidation. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The reaction of [Cp*RhCl2](2) 1 with dilithium 1,2-dicarba-closo-dodecaborane(12)-1,2-dithiolate (a) and -diselenolate (b) afforded the 16-electron rhodium(III) half-sandwich complexes Cp*Rh[E2C2(B10H10)] [E=S (3a), Se (3b)]. The 18-electron trimethylphosphane rhodium(III) half-sandwiches Cp*Rh(PMe3)[E2C2(B10H10)] 4a-c were prepared from the reaction of Cp*RhCl2(PMe3) 2 with the same dichalcogenolates, including the ditelluride (c). The complexes 4a,b could also be obtained from the reaction of 3a,b with trimethylphosphane. The molecular geometry of 4b was determined by X-ray structural analysis. The 16-electron complexes 3 an monomeric in solution as shown by multinuclear magnetic resonance (H-1-, B-11-, C-13-, P-31- Se-77-, Rh-103-, Te-125-NMR). also in comparison with the data for the trimethylphosphane analogues 4a-c and for 6a in which the rhodium bears the eta(5)-1,3-C5H3 Bu-t(2) ligand. The Rh-103 nuclear shielding is reduced by 831 ppm (3a) and 1114 ppm (3b) with respect to the 18-electron complexes 4a,b. Similarly, the Se-77 nuclear shielding in 3b is reduced by 676.4 ppm with respect to that in 4b. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Resonance electron capture mass spectrometry, in which an additional information coordinate, the energy of electron capture, is applied, has a high sensitivity and a high specificity. It is extensively used to study the structure elucidation, the mechanism of ion formation and the detection, identification and quantification of organic substances in mixture.
Resumo:
We investigate the nonlinear propagation of ultrashort pulses on resonant intersubband transitions in multiple semiconductor quantum wells. It is shown that the nonlinearity rooted from electron-electron interactions destroys the condition giving rise to self-induced transparency. However, by adjusting the area of input pulse, we find the signatures of self-induced transmission due to a full Rabi flopping of the electron density, and this phenomenon can be approximately interpreted by the traditional standard area theorem via defining the effective area of input pulse.
Resumo:
To attempt to control the quantum state of a physical system with a femtosecond two-colour laser field, a model for the two-level system is analysed as a first step. We investigate the coherent control of the two-colour laser pulses propagating in a two-level medium. Based on calculating the influence of the laser field with various laser parameters on the electron dynamics, it is found the electronic state can be changed up and down by choosing the appropriate laser pulses and the coherent control of the two-colour laser pulses can substantially modify the behaviour of the electronic dynamics: a quicker change of two states can be produced even for small pulse duration. Moreover, the oscillatory structures around the resonant frequency and the propagation features of the laser pulses depend sensitively on the relative phase of the two-colour laser pulses. Finally, the influence of a finite lifetime of the upper level is discussed in brief.