264 resultados para conduction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have calculated the bond distributions and atom positions of GaAs/GalnNAsSb superlattices using Keating's semiempirical valence force field (VFF) model and Monte Carlo simulation. The electronic structures of the superlattices are calculated using folded spectrum method (FSM) combined with an empirical pseudopotential (EP) proposed by Williamson et al.. The effects of N and Sb on superlattice energy levels are discussed. We find that the deterioration of the optical properties induced by N can be explained by the localization of the conduction-band states around the N atom. The electron and hole effective masses of the superlattices are calculated and compared with the effective masses of the bulk GaAs and GaInAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using Keating's semiempirical valence force field model and Monte Carlo simulation, we calculate the bond distributions and atom positions of GaAs/GaInNAsSb superlattices. The electronic structures of the superlattices are calculated using the folded spectrum method combined with an empirical pseudopotential proposed by Williamson The effects of N and Sb on superlattice energy levels are discussed. The deterioration of the optical properties induced by N is explained by the localization of the conduction-band states around the N atom. The electron and hole effective masses of the superlattices are calculated and compared with the effective masses of the GaAs and GaInAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theoretical analysis of intersubband optical transitions for InAs/ InGaAs quantum dots-in-a-well ( DWELL ) detectors are performed in the framework of effective-mass envelope- function theory. In contrast to InAs/ GaAs quantum dot (QD) structures, the calculated band structure of DWELL quantitatively confirms that an additional InGaAs quantum well effectively lowers the ground state of InAs QDs relative to the conduction-band edge of GaAs and enhances the confinement of electrons. By changing the doping level, the dominant optical transition can occur either between the bound states in the dots or from the ground state in the dots to bound states in the well, which corresponds to the far-infrared and long-wave infrared (LWIR ) peaks in the absorption spectra, respectively. Our calculated results also show that it is convenient to tailor the operating wavelength in the LWIR atmospheric window ( 8 - 12 mu m ) by adjusting the thickness of the InGaAs layer while keeping the size of the quantum dots fixed. Theoretical predictions agree well with the available experimental data. (c) 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the results of the temperature-dependent photoluminescence (PL) measurements, the broad PL emission in the phase-separated GaNP alloys with P compositions of 0.03, 0.07, and 0.15 has investigated. The broad PL peaks at 2.18, 2.12 and 1.83 eV are assigned to be an emission from the optical transitions from several trap levels, possibly the iso-electronic trap levels related to nitrogen. With the increasing P composition (from 0.03 to 0.15), these iso-electronic trap levels are shown to become resonant with the conduction band of the alloy and thus optically inactive, leading to the apparent red shift (80-160meV) of the PL peak energy and the trend of the red shift is strengthened. No PL emission peak is observed from the GaN-rich GaNP region, suggesting that the photogenerated carriers in the GaN-rich GaNP region may recombine with each other via non-radiation transitions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoluminescence of some low-dimensional semiconductor structures has been investigated under pressure. The measured pressure coefficients of In0.55Al0.45 As/Al0.5Ga0.5As quantum dots with average diameter of 26, 52 and 62 nm are 82, 94 and 98 meV/GPa, respectively. It indicates that these quantum dots are type-I dots. On the other hand, the measured pressure coefficient for quantum dots with 7 nm in size is -17meV/GPa, indicating the type-II character. The measured pressure coefficient for Mn emission in ZnS:Mn nanoparticles is -34.6meV/GPa, in agreement with the predication of the crystal field theory. However, the DA emission is nearly independent on pressure, indicating that this emission is related to the surface defects in ZnS host. The measured pressure coefficient of Cu emission in ZnS: Cu nanoparticles is 63.2 meV/GPa. It implies that the acceptor level introduced by Cu ions has some character of shallow level. The measured pressure coefficient of Eu emission in ZnS:Eu nanoparticles is 24.1 mev/GPa, in contrast to the predication of the crystal field theory. It may be due to the strong interaction between the excited state of Eu ions and the conduction band of ZnS host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hall, current-voltage, and deep-level transient spectroscopy measurements were used to characterize the electrical properties of metalorganic chemical vapor deposition grown undoped, Er- and Pr-implanted GaN films. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. However, four defect levels located at 0.300, 0.188, 0.600, and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees C for 30 min, and four defect levels located at 0.280, 0.190, 0.610, and 0.390 eV below the conduction band were found in the Pr-implanted GaN films after annealing at 1050 degrees C for 30 min. The origins of the deep defect levels are discussed. (C) 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unusual dark current voltage (I-V) characteristics were observed in GaN Schottky diodes. I-V characteristics of the GaN Schottky diodes were measured down to the magnitude of 10(-14) A. Although these Schottky diodes were clearly rectifying, their I-V characteristics were non-ideal which can be judged from the non-linearity in the semi-logarithmic plots. Careful analysis of the forward bias I-V characteristics on log-log scale indicates space-charge-limited current (SCLC) conduction dominates the current transport in these GaN Schottky diodes. The concentration of the deep trapping centers was estimated to be higher than 10(15) cm(-3). In the deep level transient spectra (DLTS) measurements for the GaN Schottky diodes, deep defect levels around 0.20 eV below the bottom of the conduction band were identified, which may act as the trapping centers. The concentration of the deep centers obtained from the DLTS data is about 5 x 10(15) cm(-3). SCLC measurements may be used to probe the properties of deep levels in wide bandgap GaN-AlGaN compound semiconductors, as is the case with insulators in the presence of trapping centers. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoluminescence of a GaAsN alloy with 0.1% nitrogen has been studied under pressures up to 8.5 GPa at 33, 70, and 130 K. At ambient pressure, emissions from both the GaAsN alloy conduction band edge and discrete nitrogen-related bound states are observed. Under applied pressure, these two types of emissions shift with rather different pressure coefficients: about 40 meV/GPa for the nitrogen-related features, and about 80 meV/GPa for the alloy band-edge emission. Beyond 1 GPa, these discrete nitrogen-related peaks broaden and evolve into a broad band. Three new photoluminescence bands emerge on the high-energy side of the broad band, when the pressure is above 2.5, 4.5, and 5.25 GPa, respectively, at 33 K. In view of their relative energy positions and pressure behavior, we have attributed these new emissions to the nitrogen-pair states NN3 and NN4, and the isolated nitrogen state N-x. In addition, we have attributed the high-energy component of the broad band formed above 1 GPa to resonant or near-resonant NN1 and NN2, and its main body to deeper cluster centers involving more than two nitrogen atoms. This study reveals the persistence of all the paired and isolated nitrogen-related impurity states, previously observed only in the dilute doping limit, into a rather high doping level. Additionally, we find that the responses of different N-related states to varying N-doping levels differ significantly and in a nontrivial manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A self-consistent solution of conduction band profile and subband energies for AlxGa1-xN-GaN quantum well is presented by solving the Schrodinger and Poisson equations. A new method is introduced to deal with the accumulation of the immobile charges at the AlxGa1-xN-GaN interface caused by spontaneous and piezoelectric polarization in the process of solving the Poisson equation. The effect of spontaneous and piezoelectric polarization is taken into account in the calculation. It also includes the effect of exchange-correlation to the one electron potential on the Coulomb interaction. Our analysis is based on the one electron effective-mass approximation and charge conservation condition. Based on this model, the electron wave functions and the conduction band structure are derived. We calculate the intersubband transition wavelength lambda(21) for different Al molar fraction of barrier and thickness of well. The calculated result can fit to the experimental data well. The dependence of the absorption coefficient a on the well width and the doping density is also investigated theoretically. (C) 2004 American Vacuum Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pressure dependence of the photoluminescence from ZnS : Mn2+, ZnS : Cu2+, and ZnS : Eu2+ nanoparticles were investigated under hydrostatic pressure up to 6 GPa at room temperature. Both the orange emission from the T-4(1) - (6)A(1) transition of Mn2+ ions and the blue emission from the DA pair transition in the ZnS host were observed in the Mn-doped samples. The measured pressure coefficients are -34.3(8) meV/GPa for the Mn-related emission and -3(3) meV/GPa for the DA band, respectively. The emission corresponding to the 4f(6)5d(1) - 4f(7) transition of Eu2+ ions and the emission related to the transition from the conduction band of ZnS to the t(2) level of Cu2+ ions were observed in the Eu- and Cu-doped samples, respectively. The pressure coefficient of the Eu-related emission was found to be 24.1(5) meV/GPa, while that of the Cu-related emission is 63.2(9) meV/GPa. The size dependence of the pressure coefficients for the Mn-related emission was also investigated. The Mn emission shifts to lower energies with increasing pressure and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS : Mn2+ nanoparticles than in bulk. Moreover, the absolute pressure coefficient increases with the decrease of the particle size. The pressure coefficients calculated based on the crystal field theory are in agreement with the experimental results. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure, Zeeman splitting, and Stark shift of In1-yMnyAs1-xNx oblate quantum dots are studied using the ten-band k center dot p model including the sp-d exchange interaction between the carriers and the magnetic ion. The Zeeman splitting of the electron ground states is almost isotropic. The Zeeman splitting of the hole ground states is highly anisotropic, with an anisotropy factor of 918 at B=0.1 T. The Zeeman splittings of some of the electron and hole excited states are also highly anisotropic. It is because of the spin-orbit coupling which couples the spin states with the anisotropic space-wave functions due to the anisotropic shape. It is found that when the magnetic quantum number of total orbital angular momentum is nearly zero, the spin states couple with the space-wave functions very little, and the Zeeman splitting is isotropic. Conversely, if the magnetic quantum number of total orbital angular momentum is not zero, the space-wave functions in the degenerate states are different, and the Zeeman splitting is highly anisotropic. The electron and hole Stark shifts of oblate quantum dots are also highly anisotropic. The decrease of band gap with increasing nitrogen composition is much more obvious in the smaller radius case because the lowest conduction level is increased by the quantum confinement effect and is closer to the nitrogen level. (C) 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a comprehensive study of the effect of heavy B doping and strain in Si1-xGex strained layers. On the one hand, bandgap narrowing (BGN) will be generated due to the heavy doping, on the other hand, the dopant boron causes shrinkage in the lattice constant of SiGe materials, thus will compensate for part of the strain. Taking the strain compensation of B into account for the first time and uesing the with semi-empirical method, the Jain-Roulston model is modified. And the real BGN distributed between the conduction and valence bands is calculated, which is important for the accurate design of SiGe HBTs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The valence band offset (VBO) of the wurtzite InN/ZnO heterojunction is directly determined by x-ray photoelectron spectroscopy to be 0.82 +/- 0.23 eV. The conduction band offset is deduced from the known VBO value to be 1.85 -/+ 0.23 eV, which indicates a type-I band alignment for InN/ZnO heterojunction. (C) 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As-grown Fe-doped semi-insulating InP single crystal has been converted into n-type low-resistance material after high temperature annealing. Defects in the InP materials have been studied by conventional Hall effect measurement, thermally stimulated current spectroscopy, deep level transient spectroscopy and X-ray diffraction respectively. The results indicate that Fe atoms in the InP material change from the substitutional to the interstitial sites under thermal activation. Consequently, the InP material loses its deep compensation centers which results in the change in types of conduction. The mechanism and cause of the phenomena have been analyzed through comparison of the sites of Fe atom occupation and activation in doping, diffusion and ion implantation processes of InP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modified version of the Jain-Roulston (J-R) model is developed that takes into account the compensation effect of B to Ge in strained SiGe layers for the first time. Based on this new model, the distribution of the bandgap narrowing (BGN) between the conduction and valence bands is calculated. The influence of this distribution on the transport characteristics of abrupt SiGe heterojunction bipolar transistors (HBTs) has been further considered by using the tunnelling and thermionic emission mechanisms instead of the drift and diffusion mechanisms at the interfaces where discontinuities in energy levels appear. The results show that our modified J-R model better fits the experimental values, and the energy band structure has a strong influence on electrical characteristics.