259 resultados para Structure characterization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ultracompact, low-loss, and broad-band corner mirror, based on photonic crystals, is investigated in this paper. Based on the theoretical analysis of the loss mechanism, the boundary layers of the photonic crystal region are revised to improve the extra losses, and the transmission characteristics are evaluated by using the 3-D finite-difference time-domain method. The device with optimized structure was fabricated on silicon-on-insulator substrate by using electron-beam lithography and inductively coupled plasma etching. The measured extra losses are about 1.1 +/- 0.4 dB per corner mirror for transverse-electronic polarization for the scanning wavelength range of 1510-1630 nm. Dimensions of the achieved PC corner mirror are less than ;7 x 7 mu m(2), which are only about one tenth of conventional wave-guide corner mirrors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale GaN free-standing substrate was obtained by hydride vapor phase epitaxy directly on sapphire with porous network interlayer. The bottom surface N-face and top surface Ga-face showed great difference in anti-etching and optical properties. The variation of optical and structure characteristics were also microscopically identified using spatially resolved cathodoluminescence and micro-Raman spectroscopy in cross-section of the GaN substrate. Three different regions were separated according to luminescent intensity along the film growth orientation. Some tapered inversion domains with high free carrier concentration of 5 x 10(19) cm(-3) protruded up to the surface forming the hexagonal pits. The dark region of upper layer showed good crystalline quality with narrow donor bound exciton peak and low free carrier concentration. Unlike the exponential dependence of the strain distribution, the free-standing GaN substrate revealed a gradual increase of the strain mainly within the near N-polar side region with a thickness of about 50 mu m, then almost kept constant to the top surface. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806 cm(2)/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5 mu m x 5 mu m are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5 Omega/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/mm and a maximum drain current density of 800 mA/mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and optical properties of In(Ga)As grown with the introduction of InGaAlAs or InAlAs seed dots layers are investigated. The area density and size homogeneity of the upper InGaAs dots are efficiently improved with the introduction of a layer of high-density buried dots. When the GaAs spacer layer is too thin to cover the seed dots, the upper dots exhibit the characterization of a quantum well. By analyzing the growth dynamics, we refer to it as an empty-core structure dot. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64 pf It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth and characterization of quantum cascade (QC) lasers based on InGaAs/InAlAs material system are investigated. Pronounced intersubband absorption from stacked active region of QC structure is used to monitor the wavelength of QC laser and disclose the material quality. The precise control of the epilayer thickness and the good quality of interfaces are demonstrated by the abundant narrow satellite peaks of X-ray diffraction. Laser action in quasi-continuous wave operation is achieved at lambda approximate to 5.1-5.2 mum up to 300 K. For 10 x 800 mum(2) laser device, peak output power of similar to7.2 mW and threshold current density of 3 kA/cm(2) at room temperature are obtained. For some devices, if keep the peak output powers at the similar to2 mW level, quasi-continuous wave operation at room temperature persists more than 1 h are recorded. (Q) (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural characteristics of cubic GaN epilayers grown on GaAs(001) were studied using X-ray double-crystal diffraction technique. The structure factors of cubic GaN(002) and (004) components are approximately identical. However, the integrated intensities of the rocking curve for cubic (002) components are over five times as those of (004) components. The discrepancy has been interpreted in detail considering other factors. In the conventional double crystal rocking curve, the peak broadening includes such information caused by the orientation distribution (mosaicity) and the distribution of lattice spacing. These two kinds of distributions can be distinguished by the triple-axis diffraction in which an analyser crystal is placed in front of the detector. Moreover, the peak broadening was analysed by reciprocal lattice construction and Eward sphere. By using triple-axis diffraction of cubic (002) and (113) components, domain size and dislocation density were estimated. The fully relaxed lattice parameter of cubic GaN was determined to be about 0.451 +/- 0.001nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the characterization of thermally induced interdiffusion in InAs/GaAs quantum-dot superlattices with high-resolution x-ray diffraction and photoluminescence techniques. The dynamical theory is employed to simulate the measured x-ray diffraction rocking curves of the InAs/GaAs quantum-dot superlattices annealed at different temperatures. Excellent agreement between the experimental curves and the simulations is achieved when the composition, thickness, and stress variations caused by interdiffusion are taken in account. It is found that the significant In-Ga intermixing occurs even in the as-grown InAs/GaAs quantum dots. The diffusion coefficients at different temperatures are estimated. (C) 2000 American Institute of Physics. [S0003-6951(00)02440-2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CdSe nanoclusters overcoated with CdS shell were prepared with macapoacetic acid as stabilizer. The optical properties of CdSe nanoclusters and the influence of CdS shell on the electronic structures of CdSe cores were studied by optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Based on PL and PLE results and the theoretical calculation on fine structure of bandedge exciton, a model of formation of excimer within the small clusters was proposed to explain the large Stokes shift of luminescence from absorption edge observed in PL results. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InGaAs/GaAs quantum dots (QDs) superlattice grown by molecular beam epitaxy (MBE) at different substrate temperatures for fabricating 8-12 mu m infrared photodetector were characterized by transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL). High-quality QDs superlattice can be achieved by higher growth temperature. Cross-sectional TEM shows the QDs in the successive layers are vertically aligned along growth direction. Interaction of partial vertically aligned columns leads to a perfect vertical ordering. With increasing number of bilayers, the average QDs size becomes larger in height and rapidly saturates at a certain value, while average lateral length nearly preserves initial size. This change leads to the formation of QDs homogeneous in size and of a particular shape. The observed self-organizations are attributed to the effect of strain distribution at QDs on the kinetic growth process. DCXRD measurement shows two sets of satellite peaks which corresponds to QDs superlattice and multi quantum wells formed by the wetting layers. Kinematical simulations of the wetting layers indicate that the formation of QDs is associated with a decrease of the effective indium content in the wetting layers. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nearly lattice-matched (0 0 1)LiGaO2 substrates have been used for the growth of GaN by LP-MOVPE, GaN epilayers have been grown on both domains at very low input partial pressure of hydrogen and relatively low growth temperature. The differences in the growth rate, crystal and optical qualities of hexagonal GaN epilayers grown on LiGaO2 substrate with two polar domains are investigated. LiGaO2 single crystal with a single domain structure and an adequate surface plane is a promising substrate for the growth of high quality of hexagonal GaN thin films. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural properties of SiGe/Si single wells are studied by double-crystal X-ray diffraction. Four SiGe/Si single wells have been grown on Si (0 0 1) at 750 degrees C by disilane and solid-Ge molecular beam epitaxy with varied disilane cracking temperature. Using dynamic theory, together with kinematic theory and the specific growth procedure adopted, structural parameters in the multilayer structure are determined precisely. The results are compared with those obtained from PL and XTEM as well as AES measurements. It is found that disilane adsorption is dependent on cracking temperature as well as Ge incorporation. Disilane adsorption is increased by cracking disilane while it decreased with Ge incorporation (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystal GaN films have been grown on to an Al2O3 coated (001)Si substrate in a horizontal-type low-pressure MOVPE system. A thin Al2O3 layer is an intermediate layer for the growth of single crystal GaN on to Si although it is only an oriented polycrystal him as shown by reflection high electron diffraction. Moreover, the oxide was not yet converted to a fully single crystal film, even at the stage of high temperature for the GaN overlayer as studied by transmission electron microscopy. Double crystal X-ray diffraction showed that the linewidth of (0002) peak of the X-ray rocking curve of the 1.3 mu m sample was 54 arcmin and the films had heavy mosaic structures. A near band edge peaking at 3.4 eV at room temperature was observed by photoluminescence spectroscopy. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-quality InGaAs/InAlAs/InP high-electron-mobility transistor (HEMT) structures with lattice-matched or pseudomorphic channels have been grown by molecular-beam epitaxy (MBE). The purpose of this work is to enhance the channel conductivity by changing the epitaxial structure and growth process. With the use of pseudomorphic step quantum-well channel, the highest channel conductivity is achieved at x = 0.7, the corresponding electron mobilities are as high as 12300 (300 K) and 61000 cm(2)/V.s (77 K) with two-dimensional electron gas (2DEG) density of 3.3 x 10(12) cm(-2). These structures are comprehensively characterized by Hall measurements, photoluminescence, double crystal X-ray diffraction and transmission electron microscopy. Strong room-temperature luminescence is observed, demonstrating the high optical quality of the samples. We also show that decreasing the In composition in the InyAl1-yAs spacer is very effective to increase the 2DEG density of PHEMT structures. (C) 1998 Published by Elsevier Science B.V. All rights reserved.