210 resultados para Silage of high-moisture grains
Resumo:
zhangdi于2010-03-29批量导入
Resumo:
A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 A) gold film was evaporated on the half area of the aSiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 degrees C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.
Resumo:
Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.
Resumo:
This paper presents measurement methods for determining the reflection coefficients and frequency responses of semiconductor laser diodes, photodiodes, and EA modulator chips. A novel method for determining the intrinsic frequency responses of laser diodes is also proposed, and applications of the developed measurement methods are discussed. We demonstrate the compensation of bonding wire on the capacitances of both the submount and the laser diode, and present a method for estimating the potential modulation bandwidth of TO packaging technique. Initial study on removing the effects of test fixture on large-signal performances of optoelectronic devices at high data rate is also given.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:18:15Z No. of bitstreams: 1 Demonstration of high efficient tunable lasing with one photonic crystal W1 waveguide.pdf: 564778 bytes, checksum: 1eb1246461d4a3fcc99e870bda90f9b4 (MD5)
Resumo:
Starting from the modeling of isolated ions and ion-clusters, a closed form rate and power evolution equations for high-concentration erbium-doped fiber amplifiers are constructed. Based on the equations, the effects of the fraction of ion-clusters in total ions and the number of ions per cluster on the performance of high-concentration erbium-doped fiber amplifiers are analyzed numerically. The results show that the presence of the ion-clusters deteriorates amplifier performance, such as the signal power, signal gain, the threshold pump power for zero gain, saturated signal gain, and the maximum gain efficiency, etc. The optimum fiber length or other parameters should be modified with the ion-clusters being taken into account for the amplifiers to achieve a better performance. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
On the basis of self-stability effect of four-wave mixings (FWMs) in high-nonlinear photonic-crystal fibres, a novel multi-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated experimentally at room temperature. The proposed lasers have the capacity of switching and tuning with excellent uniformity and stability. By means of adjusting the attenuators, the triple-, four-, or five-wavelength EDF lasers can be lasing simultaneously. With the assistance of the FWM self-stability function, the multi-wavelength spectrum is excellently stabilized with uniformity less than 0.9 dB.
Effect of two organic contamination modes on laser-induced damage of high reflective films in vacuum