291 resultados para Optical Properties and Phenomena.
Resumo:
Six-stacked InAs/In0.52Al0.48As self-assembled quantum wires (QWRs) on InP(001) by molecular-beam epitaxy (MBE) have been studied by high-resolution transmission electron microscopy (HRTEM) and polarized PL measurements. We obtained the chemical lattice fringe (CLF) image of InAs self-assembled QWRs embedded in the In0.52Al0.48As matrix by the interference between the (002)-diffracted beam and the transmitted beam in the image plane of the objective lens. The results show that the InAs QWRs were bounded by (113), (001) and (114) facets. Both the size and strain distribution in QWRs were determined. It was found that with the growth of successive periods, the height and height fluctuation of InAs QWRs decreased from the bottom period to the upper one. Some suggestions are put forward for further improving the uniformity of the stacked InAs QWRs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
InGaN/GaN quantum dots were grown on the sapphire (0 0 0 1) substrate in a metalorganic chemical vapor deposition system. The morphologies of QDs deposited on different modified underlayer (GaN) surfaces, including naturally as grown, Ga-mediated, In-mediated, and air-passivated ones, were investigated by atomic force microscopy (AFM). Photo luminescence (PL) method is used to evaluate optical properties. It is shown that InGaN QDs can form directly on the natural GaN layer. However, both the size and distribution show obvious inhomogeneities. Such a heavy fluctuation in size leads to double peaks for QDs with short growth time, and broad peaks for QDs with long growth time in their low-temperature PL spectra. QDs grown on the Ga-mediated GaN underlayer tends to coalesce. Distinct transform takes place from 3D to 2D growth on the In-mediated ones, and thus the formation of QDs is prohibited. Those results clarify Ga and In's surfactant behavior. When the GaN underlayer is passivated in the air, and together with an additional low-temperature-grown seeding layer, however, the island growth mode is enhanced. Subsequently, grown InGaN QDs are characterized by a relatively high density and an improved Gaussian-like distribution in size. Short surface diffusion length at low growth temperature accounts for that result. It is concluded that reduced temperature favors QD's 3D growth and surface passivation can provide another promising way to obtain high-density QDs that especially suits MOCVD system. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Effects of rapid thermal annealing on the optical and structural properties of self-assembled InAs/GaAs quantum dots capped by the InAlAs/InGaAs combination layers are studied by photoluminescence and transmission electron microscopy. The photoluminescence measurement shows that the photoluminescence peak of the sample after 850 degrees C rapid thermal annealing is blue shifted with 370meV and the excitation peak intensity increases by a factor of about 2.7 after the rapid thermal annealing, which indicates that the InAs quantum dots have experienced an abnormal transformation during the annealing. The transmission electron microscopy shows that the quantum dots disappear and a new InAlGaAs single quantum well structure forms after the rapid thermal annealing treatment. The transformation mechanism is discussed. These abnormal optical properties are attributed to the structural transformation of these quantum dots into a single quantum well.
Resumo:
ZnO thin films were prepared on Si (1 11) substrates at various temperatures from 250 to 700 degrees C using pulsed laser deposition (PLD) technique in order to investigate the structural and optical properties of the films. The structural and morphological properties of the films were investigated by XRD and SEM measurements, respectively. The quality of the films was improved with the increase of the temperature. By XRD patterns the FWHMs of the (0 0 2) peaks of the ZnO films became narrower when the temperatures were above 500 degrees C. The FWHMs of the peaks of (0 0 2) of the films were as narrow as about 0. 19 degrees when films were grown at 650 and 700 degrees C. This indicates the superior crystallinity of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The two strongest UV peaks were found at 377.9 nm from ZnO films grown at 650 and 700 degrees C. This result is consistent with that of the XRD investigation. Broad bands in visible region from 450 to 550 nm were also observed. Our works suggest that UV emissions have close relations with not only the crystallinity but also the stoichiometry of the ZnO films. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We have demonstrated 1.5 mum light emission from InAs quantum dots (QDs) capped with a thin GaAs layer. The extension of the emission wavelength can be assigned to the large QD height. We also investigate the effect of growth interruption on the PL properties and the shape of InAs QDs fabricated by migration-enhanced growth (MEG). Contrary to expectation, we observed a remarkable blueshift of the emission energy with the growth interruption in MEG mode. Detailed investigations reveal that the blueshift is related to the reduced island height with the growth interruption, which is confirmed by reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) measurement results. Accordingly, the structure changes of the islands are interpreted in terms of thermodynamic and kinetic theories. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The influence of InAs deposition thickness on the structural and optical properties of InAs/InAlAs quantum wires (QWR) superlattices (SLS) was studied. The transmission electron microscopy (TEM) results show that with increasing the InAs deposited thickness, the size uniformity and spatial ordering of InAs QWR SLS was greatly improved, but threading dislocations initiated from InAs nanowires for the sample with 6 monolayers (MLs) InAs deposition. In addition, the zig-zag features along the extending direction and lateral interlink of InAs nanowires were also observed. The InAs nanowires, especially for the first period, were laterally compact. These structural features may result in easy tunneling and coupling of charge carriers between InAs nanowires and will hamper their device applications to some extent. Some suggestions are put forward for further improving the uniformity of the stacked InAs QWRs, and for suppressing the formation of the threading dislocations in InAs QWR SLS.
Resumo:
Mn ions were doped into InAs/GaAs quantum dots samples by high energy. implantation and subsequent annealing. The optical and electric properties of the samples have been studied. The photoluminescence intensity of the samples annealed rapidly is stronger than that of the samples annealed for long time. By studying the relationship between the photoluminescence peaks and the implantation dose, it can be found that the photoluminescence peaks of the quantum dots show a blueshift firstly and then move to low energy with the implantation. dose increasing. The latter change in the photoluminescence peaks is probably attributed to that Mn ions entering the InAs quantum dots, which release the strain of the quantum dots. For the samples implanted by heavy dose (annealed rapidly) and the samples annealed for long time, the resistances versus temperature curves reveal anomalous peaks around 40 K.
Resumo:
C-axis-orientated ZnO thin films were prepared on glass substrates by pulsed-laser deposition (PLD) technique in an oxygen-reactive atmosphere, using a metallic Zn target. The effects of growth condition such as laser energy and substrate temperature on the structural and optical properties of ZnO films had been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra and room-temperature (RT) photoluminescence (PL) measurements. The results showed that the thickness, crystallite size, and compactness of ZnO films increased with the laser energy and substrate temperature. Both the absorption edges and the UV emission peaks of the films exhibited redshift, and UV emission intensity gradually increased as the laser energy and substrate temperature increased. From these results, it was concluded that crystalline quality of ZnO films was improved with increasing laser energy and substrate temperature. (c) 2007 Elsevier B.N. All rights reserved.
Resumo:
We have investigated the growth of AlGaN epilayers on a sapphire substrate by metalorganic chemical vapour deposition using various low-temperature ( LT) AlN buffer thicknesses. Combined scanning electron microscopy and cathodoluminescence investigations reveal the correlation between the surface morphology and optical properties of AlGaN films in a microscopic scale. It is found that the suitable thickness of the LT AlN buffer for high quality AlGaN growth is around 20 nm. The Al compositional inhomogeneity of the AlGaN epilayer is attributed to the low lateral mobility of Al adatoms on the growing surface.
Resumo:
High-performance violet light-emitting diodes (LEDs) with InGaN/AlInGaN multiple quantum well (MQW) active regions were grown by metal organic chemical vapor deposition (MOCVD). The interface flatness of the InGaN/AlInGaN MQWs and the emission efficiency of the LED are firstly improved with increasing Al content in the AlInGaN barrier layer, and then degraded as Al content increases further, being optimal when Al content is 0.12. Similarly, the result is optimized if the indium content is approximately 2.5% in the AlInGaN barrier layer. The mechanisms which have influences on the radiative efficiency when the Al content increases are discussed. A high output power of 7.3 mW for the violet LED at 20 mA current has been achieved. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The influence of GaAS(1 0 0)2 degrees substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The electronic structure, electron g factors and optical properties of InAs quantum ellipsoids are investigated, in the framework of the eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of the valence band. Circularly polarized emissions under circularly polarized excitations may have opposite polarization factors to the exciting light. For InAs ellipsoids the length, which is smaller than 35 nm, is still in a strongly quantum-confined regime. The electron g factors of InAs spheres decrease with increasing radius, and are nearly 2 when the radius is very small. The quantization of the electron states quenches the orbital angular momentum of the states. Actually, as some of the three dimensions increase, the electron g factors decrease. As more dimensions increase, the g factors decrease more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The magnetic field along the z axis of the crystal structure causes linearly polarized emissions in the spheres, which emit unpolarized light in the absence of magnetic field.
Resumo:
Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL). It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.
Resumo:
The growth of InAs quantum dots on vicinal GaAs (100) Substrates was systematically studied using low-pressure metalorganic chemical vapor deposition (MOCVD). The dots showed a clear bimodal size distribution on vicinal substrates. The way of evolution of this bimodal size distribution was studied as a function of growth temperature, InAs layer thickness and InAs deposition rate. The optical properties of dots grown on vicinal substrates were also studied by photoluminescence (PL). It was found that, compared with dots on exact substrates, dots on vicinal substrates had better optical properties such as a narrower PL line width, a longer emission wavelength, and a larger PL intensity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Both cracked and crack-free GaN/Al0.55Ga0.45N multiple quantum wells (MQWs) grown on GaN template by metalorganic chemical vapor deposition have been studied by triple-axis X-ray diffraction, grazing-incidence X-ray reflectivity, atomic force microscope, photoluminescence spectroscopy and low-energy positron annihilation spectroscopy. The experimental results show that cracks generation not only deteriorates the surface morphology, but also leads to a period dispersion and roughens the interfaces of MQWs. The mean density of dislocations in MQWs, determined from the average full-width at half-maximum of to-scan of each satellite peak, has been significantly enhanced by the cracks generation. Furthermore, the measurement of annihilation-line Doppler broadening reveals a higher concentration of negatively charged vacancies in the cracked MQWs. The combination of these vacancies and the high density of edge dislocations are assumed to contribute to the highly enhanced yellow luminescence in the cracked sample. (c) 2005 Elsevier B.V. All rights reserved.