182 resultados para Máquinas de vapor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micro-Raman spectroscopy and infrared (IR) spectroscopy have been performed for the study of the microstructure of amorphous hydrogenated oxidized silicon (alpha-SiOx,:H) films prepared by Plasma Enhanced Chemical Vapor Deposition technique. It is found that a-SiOx:H consists of two phases: an amorphous silicon-rich phase and an oxygen-rich phase mainly comprised of HSi-SiO2 and HSi-O-3. The Raman scattering; results exhibit that the frequency of TO-like mode of amorphous silicon red-shifts with decreasing size of silicon-rich region. This is related to the quantum confinement effects, similar to the nanocrystalline silicon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron mobility limited by nitrogen vacancy scattering was taken into account to evaluate the quality of n-type GaN grown by metal-organic vapor phase epitaxy. The nitrogen vacancy scattering potential used for our mobility calculation has to satisfy two requirements: such potential is (1) spatially short range, and (2) finite and not divergent at the vacancy core. A square-well potential was adopted to calculate the mobility, because it satisfies not only these two requirements, but also simplifies the calculation. As a result, the estimated mobility shows a T-1/2 temperature dependence, and is very sensitive to the potential well width. After introducing the nitrogen vacancy scattering, we obtained the best fitting between the calculated and experimental results for our high quality sample, and it was found that the measured mobility is dominated by ion impurity and dislocation scatterings at the low temperatures, but dominated by optical phonon and nitrogen vacancy scatterings at the high temperatures. (C) 2000 American Institute of Physics. [S0003-6951(00)04112-7].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared at low temperature by hot wire chemical vapor deposition (HWCVD). Microstructures of the mu c-Si:H films with different H-2/SiH4 ratios and deposition pressures have been characterized by infrared spectroscopy X-ray diffraction (XRD), Raman scattering, Fourier transform (FTIR), cross-sectional transmission electron microscopy (TEM) and small angle X-ray scattering (SAX). The crystallization of silicon thin film was enhanced by hydrogen dilution and deposition pressure. The TEM result shows the columnar growth of mu c-Si:H thin films. An initial microcrystalline Si layer on the glass substrate, instead of the amorphous layer commonly observed in plasma enhanced chemical vapor deposition (PECVD), was observed from TEM and backside incident Raman spectra. The SAXS data indicate an enhancement of the mass density of mu c-Si:H films by hydrogen dilution. Finally, combining the FTIR data with the SAXS experiment suggests that the Si--H bonds in mu c-Si:H and in polycrystalline Si thin films are located at the grain boundaries. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the growth of GaN buffers by metalorganic chemical vapor deposition (MOCVD) on GaAs (100) substrates. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to study the dependence of the nucleation on the growth temperature, growth rate, annealing effect, and growth time. A two-step growth sequence must be used to optimize and control the nucleation and the subsequent growth independently. The size and distribution of islands and the thickness of buffer layers have a crucial role on the quality of GaN layers. Based on the experimental results, a model was given to interpret the formation of hexagonal-phase GaN in the cubic-phase GaN layers. Using an optimum buffer layer, the strong near-band emission of cubic GaN with full-width at half maximum (FWHM) value as small as 5.6 nm was observed at room temperature. The background carrier concentration was estimated to be in the range of 10(13) similar to 10(14) cm(-3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of room-temperature optical transitions in a Mg-doped cubic GaN epilayer grown on GaAs(100) by metalorganic chemical vapor deposition has been investigated. By examining the dependence of photoluminescence on the excitation intensity (which varied over four orders) at room temperature, four different emissions with different origins were identified. A blue emission at similar to 3.037 eV was associated with a shallow Mg acceptor, while three different lower-energy emissions at similar to 2.895, similar to 2.716, and similar to 2.639 eV were associated with a deep Mg complex. In addition to a shallow acceptor at E congruent to 0.213 eV, three Mg-related deep defect levels were also found at around 215, 374, and 570 meV (from the conduction band). (C) 2000 American Institute of Physics. [S0021-8979(00)01904-6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep trap levels in a Mg-doped GaN grown by metalorganic vapor phase epitaxy are studied with deep level transient spectroscopy (DLTS). The Mg concentration of the sample was 4.8 x 10(19) cm(-3), but the hole concentration was as low as 1.3x10(17) cm-3 at room temperature. The DLTS spectrum has a dominant peak D-1 with an activation energy of 0.41+/-0.05 eV, accompanied by two additional peaks with activation energies of 0.49+/-0.09 eV (D-2) and 0.59+/-0.05 eV (D-3). It was found that the dominant peak D-1 consists of five peaks, each of which has different activation energy and capture cross section. In order to investigate these deep levels further, we performed heat treatment on the same samples to observe the variations of activation energy, capture cross section, and amplitude of DLTS signals. It was found that the longer the heat treatment duration is, the lower the amplitude of DLTS peaks become. This suggests that the decrease of the DLTS signal originates from hydrogen atom outgoing from the film during the annealing process. The possible originality of multiple trap levels was discussed in terms of the Mg-N-H complex. (C) 2000 American Vacuum Society. [S0734-2101(00)01701-2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic AlGaN films were grown on GaAs(100) substrates by MOVPE. Scanning electron microscope and photoluminescence were used to analyze the surface morphology and the crystalline quality of the epitaxial layers. We found that both NH, and TEGa fluxes have a strong effect on the surface morphology of AlGaN films. A model for the lateral growth mechanism is presented to qualitatively explain this effect. The content of hexagonal AlGaN in the cubic AlGaN films was also related to the NH3 flux. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability of cubic-phase GaN (c-GaN) films are investigated by photoluminescence (PL) and Raman scattering spectroscopy. C-GaN films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition. PL measurements show that the near-band-edge emissions in the as-grown GaN layers and thermally treated samples are mainly from c-GaN. No degradation of the optical qualities is observed after thermal annealing. Raman scattering spectroscopy shows that the intensity of the E-2 peak from hexagonal GaN grains increases with annealing temperature for the samples with poor crystal quality, while thermal annealing up to 1000 degrees C has no obvious effect on the samples with high crystal quality. (C) 1999 American Institute of Physics. [S0003-6951(99)04719-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal GaN films have been grown on to an Al2O3 coated (001)Si substrate in a horizontal-type low-pressure MOVPE system. A thin Al2O3 layer is an intermediate layer for the growth of single crystal GaN on to Si although it is only an oriented polycrystal him as shown by reflection high electron diffraction. Moreover, the oxide was not yet converted to a fully single crystal film, even at the stage of high temperature for the GaN overlayer as studied by transmission electron microscopy. Double crystal X-ray diffraction showed that the linewidth of (0002) peak of the X-ray rocking curve of the 1.3 mu m sample was 54 arcmin and the films had heavy mosaic structures. A near band edge peaking at 3.4 eV at room temperature was observed by photoluminescence spectroscopy. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hole trap levels in a Mg-doped GaN grown by metalorganic vapor phase epitaxy (MOVPE) are studied with deep level transient spectroscopy (DLTS). The Mg concentration of the sample was 4.8 x 10(19) cm(-3), but the hole concentration was as low as 1.3 x 10(17) cm(-3) at room temperature. The DLTS spectrum has a dominant peak D-1 with activation energy of 0.41+/-0.05 eV, accompanied by two additional peaks with activation energies of 0.49+/-0.09 eV (D-2) and 0.59+/-0.05 eV (D-3). It was found that the dominant peak D-1 consists of five peaks, each of which has different activation energy and capture cross section. A relevant model for these levels is presented in relation to the Mg-N-H complexes. (C) 1998 American Institute of Physics. [S0003-6951(98)04340-X].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth rate of GaN buffer layers on sapphire grown by metalorganic vapor-phase epitaxy (MOVPE) in an atmospheric pressure, two-channel reactor was studied. The growth rate, as measured using laser reflectance, was found to be dependent on growth temperature, molar flow rate of the sources tin this case, trimethylgallium and ammonia) and the input configuration of sources into the reactor. A model of the GaN buffer layer growth process by MOVPE is proposed to interpret the experimental evidence. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-temperature growth of cubic GaN at 520 degrees C was achieved using CCl4 as an additive by metalorganic chemical-vapor deposition (MOCVD) on GaAs substrate. X-Ray measurement confirmed that the films are single-phase cubic GaN. Scanning electron microscopy (SEM) and reflection high-energy electron diffraction (RHEED) were also used to analyze the surface morphology and the quality of films. The evolution of surface morphology suggests that CCl4 can reduce the hopping barrier and thus Ga adatoms are able to diffuse easily on the GaN surface. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical properties of low-temperature-deposited GaN buffer layers with different thicknesses grown by metal-organic vapor-phase epitaxy have been studied. A tentative model for the optimum thickness of buffer layer has been proposed. Heavily Si-doped GaN layers have been grown using silane as the dopant. The electron concentration of Si-doped GaN reached 1.7 x 10(20) cm(-3) with mobility 30 cm(2)/V s at room temperature. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid composites composed of zinc phthalocyanine embedded in silicon matrixes have attracted attention because of the potential for solar energy conversion. We produce hybrid composites by thermal evaporation for the plithalocyanine and PECVD (Plasma Enhanced Chemical Vapor Deposition) for the silicon matrix. Deposition of ZnPc/a-Si(amorphous silicon) composites was achieved in a sequential manner. The compound films were characterized by optical transmittance spectra and photoconductivity measurement. The optical transmittance measurements were carried out in the visible region (500 - 800 nm). Compared to pure silicon film, the photosensitivity of compound functional films was enhanced by one order of magnitude. This demonstrates the Si sensitized by adding ZnPc.