326 resultados para INFRARED DETECTOR
Resumo:
Near infrared broadband emission characteristics of bismuth-doped aluminophosphate glass have been investigated. Broad infrared emissions peaking at 1210nm, 1173nm and 1300nm were observed when the glass was pumped by 405nm laser diode (LD), 514nm Ar+ laser and 808nm LD, respectively. The full widths at half maximum (FWHMs) are 235nm, 207nm and 300nm for the emissions at 1210nm, 1173nm and 1300nm, respectively. Based on the energy matching conditions, it is suggested that the infrared emission may be ascribed to P-3(1) --> P-3(0) transition of Bi+. The broadband infrared luminescent characteristics of the glasses indicate that they are promising for broadband optical fiber amplifiers and tunable lasers. (C) 2005 Optical Society of America.
Resumo:
The broadband emission in the 1.2 similar to 1.6 mu m region from Li2O-Al2O3-ZnO-SiO2 ( LAZS) glass codoped with 0.01mol.% Cr2O3 and 1.0mol.% Bi2O3 when pumped by the 808nm laser at room temperature is not initiated from Cr4+ ions, but from bismuth, which is remarkably different from the results reported by Batchelor et al. The broad similar to 1300nm emission from Bi2O3-containing LAZS glasses possesses a FWHM ( Full Width at Half Maximum) more than 250nm and a fluorescent lifetime longer than 500 mu s when excited by the 808nm laser. These glasses might have the potential applications in the broadly tunable lasers and the broadband fiber amplifiers. (c) 2005 Optical Society of America.
Resumo:
Broadband infrared luminescence covering the optical telecommunication wavelength region of 0, E and S bands was observed in GeO2: Bi, M (M = Ga, B) glasses prepared by conventional melting-quenching technique. The luminescence with a maximum at around 1320 nm possesses a full width at half maximum larger than 300 nm and mean fluorescent lifetime longer than 500 mus when excited by an 808 nm-laser. These glasses may have potential applications in widely tunable laser and super-broadband optical amplifier for the optical communications. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Blue frequency-upconversion fluorescence emission has been observed in Ce3+-doped Gd2SiO5 single crystals, pumped with 120-fs 800 nm IR laser pulses. The observed fluorescence emission peaks at about 440nm is due to 5d -> 4f transition of Ce3+ ions. The intensity dependence of the blue fluorescence emission on the IR excitation laser power obeys the cubic law, demonstrating three-photon absorption process. Analysis suggested that three-photon simultaneous absorption induced population inversion should be the predominant frequency upconversion mechanism. (c) 2006 Optical Society of America.
Resumo:
Broadband neat-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-cermaics is observed. The broad emission is centered at 1290 nm and covers the whole telecommunication wavelength region (1100-1700 nm) with full width at half maximum of about 340 nm. The observed infrared emission could be attributed to the T-3(2)(F) -> (3)A(2)(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 x 10(-24) cm(2)s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.
Resumo:
Absorption spectrum from 400 to 2000 run and upconversion fluorescence spectra under 940 nm pumping of YAG single crystal codoped with 5 at.% Yb3+ and 4 at.% Tm3+ were studied at room temperature. The blue upconversion emission centered at 483 nm corresponds to the transition (1)G(4) -> H-3(6), the emission band around 646 nm corresponds to the transition (1)G(4) -> F-3(4) of Tm3+. Energy transfer from Yb3+ to Tm3+ is mainly nonradiative and the transfer efficiency was experimentally assessed. The line strengths, transition probabilities and radiative lifetimes of (1)G(4) level were calculated by using Judd-Ofelt theory. Gain coefficient calculated from spectra shows that the upconversion corresponding with transitions (1)G(4) -> H-3(6) in YAG doped with Yb3+ and Tm3+ is potentially useful for blue light Output. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
High optical quality Lu2SiO5 (LSO) and (Lu0.5Gd0.5)(2)SiO5 (LGSO) laser crystals codoped with Er3+ and Yb3+ have been fabricated by the Czochralski method. Intense upconversion (UC) and infrared emission (1543 nm) are observed under excitation of 975 nm. The luminescence processes are explained and the emission efficiencies are quantitatively obtained by measuring the UC efficiency and calculating the emission cross section. The temperature-dependent optical properties of the crystals are also investigated. Our study indicates that Er3+-Yb3+ : LSO and Er3+-Yb3+: LGSO crystals are promising gain media for developing the solid-state 1.5 mu m optical amplifiers and tunable UC lasers. (c) 2008 American Institute of Physics.
Resumo:
InAs/GaSb superlattice (SL) midwave infrared photovoltaic detectors are grown by molecular beam epitaxy on GaSb(001) residual p-type substrates. A thick GaSb layer is grown under the optimized growth condition as a buffer layer. The detectors containing a 320-period 8ML/8ML InAs/GaSb SL active layer are fabricated with a series pixel area using anode sulfide passivation. Corresponding to 50% cutoff wavelengths of 5.0 mu m at 77 K, the peak directivity of the detectors is 1.6 x 10(10) cm.Hz(1/2) W-1 at 77 K.
Resumo:
Transmission of electromagnetic wave in a heavily doped n-type GaAs film is studied theoretically. From the calculations, an extraordinary transmission of p-polarized waves through the film with subwavelength grooves on both surfaces at mid-infrared frequencies is found. This extraordinary transmission is attributed to the coupling of the surface-plasmon polariton modes and waveguide modes. By selecting a set of groove parameters, the transmission is optimized to a maximum. Furthermore, the transmission can be tuned by dopant concentrations. As the dopant concentration increases, the peak position shifts to higher frequency but the peak value decreases.
Resumo:
The symmetry group analysis is applied to classify the phonon modes of N-stacked graphene layers (NSGLs) with AB and AA stacking, particularly their infrared and Raman properties. The dispersions of various phonon modes are calculated in a multilayer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the interlayer interactions in NSGLs. The experimentally reported redshift phenomena in the layer-number dependence of the intralayer optical C-C stretching mode frequencies are interpreted. An interesting low-frequency interlayer optical mode is revealed to be Raman or infrared active in even or odd NSGLs, respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.
Resumo:
Theoretical calculation of electronic energy levels of an asymmetric InAs/InGaAS/GaAS quantum-dots-in-a-well (DWELL) structure for infrared photodetectors is performed in the framework of effective-mass envelope-function theory. Our calculated results show that the electronic energy levels in quantum dots (QDs) increase when the asymmetry increases and the ground state energy increases faster than the excited state energies. Furthermore, the results also show that the electronic energy levels in QDs decrease as the size of QDs and the width of quantum well (QW) in the asymmetric DWELL structure increase. Additionally, the effects of asymmetry, the size of QDs and the width of QW on the response peak of asymmetry DWELL photodetectors are also discussed.
Resumo:
Silicon nitride films were deposited by plasma-enhanced chemical-vapour deposition. The films were then implanted with erbium ions to a concentration of 8 x 10(20) cm(-3). After high temperature annealing, strong visible and infrared photoluminescence (PL) was observed. The visible PL consists mainly of two peaks located at 660 and 750 nm, which are considered to originate from silicon nanocluster (Si-NCs) and Si-NC/SiNx interface states. Raman spectra and HRTEM measurements have been performed to confirm the existence of Si-NCs. The implanted erbium ions are possibly activated by an energy transfer process, leading to a strong 1.54 mu m PL.