Electronic energy levels in an asymmetric quantum-dots-in-a-well structure for infrared photodetectors


Autoria(s): Wang ZC; Xu B; Chen YH; Shi LW; Liang ZM; Wang ZG
Data(s)

2008

Resumo

Theoretical calculation of electronic energy levels of an asymmetric InAs/InGaAS/GaAS quantum-dots-in-a-well (DWELL) structure for infrared photodetectors is performed in the framework of effective-mass envelope-function theory. Our calculated results show that the electronic energy levels in quantum dots (QDs) increase when the asymmetry increases and the ground state energy increases faster than the excited state energies. Furthermore, the results also show that the electronic energy levels in QDs decrease as the size of QDs and the width of quantum well (QW) in the asymmetric DWELL structure increase. Additionally, the effects of asymmetry, the size of QDs and the width of QW on the response peak of asymmetry DWELL photodetectors are also discussed.

Identificador

http://ir.semi.ac.cn/handle/172111/6586

http://www.irgrid.ac.cn/handle/1471x/63031

Idioma(s)

英语

Fonte

Wang, ZC ; Xu, B ; Chen, YH ; Shi, LW ; Liang, ZM ; Wang, ZG .Electronic energy levels in an asymmetric quantum-dots-in-a-well structure for infrared photodetectors ,CHINESE PHYSICS LETTERS,2008 ,25(7): 2645-2648

Palavras-Chave #半导体材料 #ABSORPTION
Tipo

期刊论文