311 resultados para High Power Laser Beam
Resumo:
根据波导模理论,推导了高功率激光二极管阵列的远场分布,根据其分布特点,设计了一种离轴外腔.运用这种外腔,在工作电流为17A时,光束的束宽积从自由运转时的1100mm.mrad减小到128mm.mrad,二极管阵列的光束质量提高了8.5倍左右,输出功率约为自由运转时的75%.
Resumo:
A series-parallel model is introduced to calculate the effective thermal conductivities of hollow claddings of photonic crystal fibers ( PCFs ). The temperature distribution and thermal-optical properties of PCF lasers are studied by solving the heat transfer equations. The average power scaling of the PCF lasers in respect of the thermal effects is also discussed. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A series-parallel model is introduced to calculate the effective thermal conductivities of hollow claddings of photonic crystal fibers ( PCFs ). The temperature distribution and thermal-optical properties of PCF lasers are studied by solving the heat transfer equations. The average power scaling of the PCF lasers in respect of the thermal effects is also discussed. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A high-power ytterbium-doped fiber laser (YDFL) with homemade double-clad fiber (DCF) is introduced in this letter. The geometric parameter and laser characteristics of the fiber have been studied. With one-end-pumping scheme, pumped by a high-power laser diode with launching power of 280 W, a maximum continuous wave (CW) output of 110 W is obtained with an optical-to-optical efficiency of 40%.
Resumo:
The coupling efficiency of laser beam to multimode fiber is given by geometrical optics, and the relation between the maximum coupling efficiency and the beam propagation factor M-2 is analyzed. An equivalent factor M-F(2) for the multimode fiber is introduced to characterize the fiber coupling capability. The coupling efficiency of laser beam to multimode fiber is calculated in respect of the ratio M-2/M-F(2) by the overlapping integral theory. The optimal coupling efficiency can be roughly estimated by the ratio of M-2 to M-F(2) but with a large error range. The deviation comes from the lacks of information on the detail of phase and intensity profile in the beam factor M-2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A high-power Ytterbium-doped fiber laser (YDFL) with homemade double clad fiber (DCF) is introduced in this paper. The output power characteristics of a linear cavity fiber laser have been studied theoretically by solving the rate equations and experimentally tested with single- and double-end-pumping configurations. When both ends of the fiber are pumped by two high-power laser diodes with a launched power of similar to 300 W each, a maximum CW output of 444 W is obtained with a slope efficiency of similar to 75%. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Microvoid arrays were self-organized when femtosecond laser beam was tightly focused at a fixed point inside CaF2 crystal sample. Except void array grown below the focal point which had been reported before, we found another void array grown vertical to the laser propagation direction. This result has potential application in the fabrication of integrated micro-optic elements and photonic crystals. The possible mechanism of the phenomenon was proposed and verified experimentally.
Resumo:
综述了离子束辅助沉积技术在高功率激光薄膜制备中的应用研究进展。指出该技术在制备高激光损伤阈值的薄膜中存在的问题,即出现过高的堆积密度,会给薄膜带来杂质缺陷、化学计量比缺陷、损伤缺陷、晶界缺陷,制备薄膜的残余应力存在着压应力增加的趋势,会改变薄膜的晶体结构等。并指出了该研究领域的研究方向。
Resumo:
A silicon-on-insulator optical fiber-to-waveguide spot-size converter (SSC) using Poly-MethylMethAcrylate (PMMA) is presented for integrated optical circuits. Unlike the conventional use of PMMA as a positive resist, it has been successfully used as a negative resist with high-dose electron exposure for the fabrication of ultrafine silicon wire waveguides. Additionally, this process is able to reduce the side-wall roughness, and substantially depresses the unwanted propagation loss. Exploiting this technology, the authors demonstrated that the SSC can improve coupling efficiency by as much as over 2.5 dB per coupling facet, compared with that of SSC fabricated with PMMA as a positive resist with the same dimension.
Resumo:
A novel type of integrated InGaAsP superluminescent light source was fabricated based on the tilted ridge-waveguide structure with selective-area quantum well (QW) intermixing. The bandgap structure along the length of the device was modified by impurity free vacancy diffusion QW intermixing, The spectral width was broadened from the 16 nm of the normal devices to 37 nm of the QW intermixing enhanced devices at the same output power level. High superluminescent power (210 mW) was obtained under pulsed conditions with a spectral width of 37 nm.
Resumo:
An electroabsorption modulator using an intra-step quantum well (IQW) active region is fabricated for a radio over fibre system. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio efficiency (10 dB V-1) and low capacitance (< 0.42 pF), with which high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to an excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for a multi-quantum well EAM without a heat sink.
Resumo:
An electroabsorption modulator using the intrastep quantum well (IQW) active region is fabricated for optical network systems. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio elliciency 10 dB/V and low capacitance (< 0.42 pF), with which an ultra high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for multi-quantum well EAMs without heat sinks.