172 resultados para Geometry, Plane
Resumo:
In practical situations, the causes of image blurring are often undiscovered or difficult to get known. However, traditional methods usually assume the knowledge of the blur has been known prior to the restoring process, which are not practicable for blind image restoration. A new method proposed in this paper aims exactly at blind image restoration. The restoration process is transformed into a problem of point distribution analysis in high-dimensional space. Experiments have proved that the restoration could be achieved using this method without re-knowledge of the image blur. In addition, the algorithm guarantees to be convergent and has simple computation.
Resumo:
The time evolution of the ground state wave function of an exciton in an ideal bilayer system is investigated within the framework of the effective-mass approximation. All of the moduli squared of the ground state wave functions evolve with time as cosine functions after an in-plane electric field is applied to the bilayer system. The variation amplitude and period of the modulus squared of the ground state wave function increase with the in-plane electric field F-r for a fixed in-plane relative coordinate r and fixed separation d between the electron and hole layers. Moreover, the variation amplitude and period of the modulus squared of the ground state wave function increase with the separation d for a fixed r and fixed in-plane electric field. Additionally, the modulus squared of the ground state wave function decreases as r increases at a given time t for fixed values of d and F-r. (c) 2007 American Institute of Physics.
Resumo:
地址: Chinese Acad Sci, Inst Semicond, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
Resumo:
Temperature dependences of the polarized Raman scattering spectra in the backscattering configuration of the nonpolar a-plane (or [11 (2) over bar0]-oriented) GaN thin film are analyzed in the range from 100 to 570 K. The nonpolar a-plane GaN film is grown on an r-plane [or (1 (1) over bar 02)-oriented] sapphire substrate by metal organic chemical vapor deposition. The spectral features of the Raman shifts, intensities, and linewidths of the active phonons modes A(1)(TO), E-1(TO), and E-2(high) are significantly revealed, and corresponding temperature coefficients are well deduced by the empirical relationships. With increasing the measurement temperature the Raman frequencies are substantially redshifted and the linewidths gradually broaden. The compressive-strain-free temperature for the nonpolar a-plane GaN film is found to be at about 400 K. Our studies will lead to a better understanding of the fundamental physical characteristics of the nonpolar GaN film. (c) 2007 American Institute of Physics.
Resumo:
Nonpolar (1120) a-plane GaN thin films were grown on r-plane (1102) sapphire substrates by low-pressure metal organic chemical vapor deposition (MOCVD). The stress characteristics of the a-plane GaN films were investigated by means of polarized Raman scattering spectra in backscattering configurations. The experimental results show that there are strong anisotropic in-plane stresses within the epitaxial a-plane GaN films by calculating the corresponding stress tensors. The temperature dependence of Raman scattering spectra was studied in the range from 100 K to 550 K. The measurements reveal that the Raman phonon frequencies decrease with increasing temperature. The temperature at which nonpolar a-plane GaN films are strain free is discussed. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In-plane optical anisotropy (IPOA) in (001) GaAs/AlGaAs superlattice induced by uniaxial strain has been investigated by reflectance difference spectroscopy (RDS). Uniaxial strain on the order of 10(-4) was introduced by bending a strip sample with a stress apparatus. The IPOA of all interband transitions shows a linear dependence on strain. The birefringence and dichroism spectra induced by strain are obtained by RDS on the basis of a three-phase model, which is in good agreement with the reported results. (c) 2006 American Institute of Physics.
Resumo:
Because of information digitalization and the correspondence of digits and the coordinates, Information Science and high-dimensional space have consanguineous relations. With the transforming from the information issues to the point analysis in high-dimensional space, we proposed a novel computational theory, named High dimensional imagery geometry (HDIG). Some computational algorithms of HDIG have been realized using software, and how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is demonstrated in this paper. As the applications, two kinds of experiments of HDIG, which are blurred image restoration and pattern recognition ones, are given, and the results are satisfying.
Resumo:
In the light of descriptive geometry and notions in set theory, this paper re-defines the basic elements in space such as curve and surface and so on, presents some fundamental notions with respect to the point cover based on the High-dimension space (HDS) point covering theory, finally takes points from mapping part of speech signals to HDS, so as to analyze distribution information of these speech points in HDS, and various geometric covering objects for speech points and their relationship. Besides, this paper also proposes a new algorithm for speaker independent continuous digit speech recognition based on the HDS point dynamic searching theory without end-points detection and segmentation. First from the different digit syllables in real continuous digit speech, we establish the covering area in feature space for continuous speech. During recognition, we make use of the point covering dynamic searching theory in HDS to do recognition, and then get the satisfying recognized results. At last, compared to HMM (Hidden Markov models)-based method, from the development trend of the comparing results, as sample amount increasing, the difference of recognition rate between two methods will decrease slowly, while sample amount approaching to be very large, two recognition rates all close to 100% little by little. As seen from the results, the recognition rate of HDS point covering method is higher than that of in HMM (Hidden Markov models) based method, because, the point covering describes the morphological distribution for speech in HDS, whereas HMM-based method is only a probability distribution, whose accuracy is certainly inferior to point covering.
Resumo:
In this paper, a novel algorithm for removing facial makeup disturbances as a face detection preprocess based on high dimensional imaginal geometry is proposed. After simulation and practical application experiments, the algorithm is theoretically analyzed. Its apparent effect of removing facial makeup and the advantages of face detection with this pre-process over face detection without it are discussed. Furthermore, in our experiments with color images, the proposed algorithm even gives some surprises.
Resumo:
In this paper, a novel approach for mandarin speech emotion recognition, that is mandarin speech emotion recognition based on high dimensional geometry theory, is proposed. The human emotions are classified into 6 archetypal classes: fear, anger, happiness, sadness, surprise and disgust. According to the characteristics of these emotional speech signals, the amplitude, pitch frequency and formant are used as the feature parameters for speech emotion recognition. The new method called high dimensional geometry theory is applied for recognition. Compared with traditional GSVM model, the new method has some advantages. It is noted that this method has significant values for researches and applications henceforth.
Resumo:
In this paper, we study a problem of geometric inequalities for a Multi-degree of Freedom Neurons. Some new geometric inequalities for a Multi-degree of Freedom Neurons are established. As special cases, some known inequalities are deduced.
Resumo:
We proposed a novel methodology, which firstly, extracting features from species' complete genome data, using k-tuple, followed by studying the evolutionary relationship between SARS-CoV and other coronavirus species using the method, called "High-dimensional information geometry". We also used the mothod, namely "caculating of Minimum Spanning Tree", to construct the Phyligenetic tree of the coronavirus. From construction of the unrooted phylogenetic tree, we found out that the evolution distance between SARS-CoV and other coronavirus species is comparatively far. The tree accurately rebuilt the three groups of other coronavirus. We also validated the assertion from other literatures that SARS-CoV is similar to the coronavirus species in Group I.
Resumo:
In the present review, the measuring principle of reflectance difference spectroscopy (RDS) is given. As a powerful tool in the surface and interface analysis technologies, the application of RDS to the research on semiconductor materials is summarized. along with the origins of the in-plane optical anisotropy of semiconductors. And it is believed that RDS will play an important role in the electrooptic modification of Si-based semiconductor materials.
Resumo:
The electronic states of nano-structures are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The barrier width and the number of plane waves are proposed to be 2.5 times the effective Bohr radius and 15(n), respectively, for n-dimensional nano-structures (n = 1,2,3). Our proposals can be widely applied in the design of various nano-structure devices.
Resumo:
A novel image restoration approach based on high-dimensional space geometry is proposed, which is quite different from the existing traditional image restoration techniques. It is based on the homeomorphisms and "Principle of Homology Continuity" (PHC), an image is mapped to a point in high-dimensional space. Begin with the original blurred image, we get two further blurred images, then the restored image can be obtained through the regressive curve derived from the three points which are mapped form the images. Experiments have proved the availability of this "blurred-blurred-restored" algorithm, and the comparison with the classical Wiener Filter approach is presented in final.