140 resultados para FERROELECTRICS CERAMICS
Resumo:
Optical spectroscopic properties of Er3+-doped alkaline-earth metal modified fluoropho sphate glasses have been investigated experimentally for developing broadband fiber and planar amplifiers. The results show a strong correlation between the alkaline-earth metal content and the spectroscopic parameters such as absorption and emission cross sections, full widths at half-maximum and Judd-Ofelt intensity parameters. It is found that strontium ions could have more influences on the Judd-Ofelt intensity parameters and the absorption and emission cross sections than other alkaline-earth metal ions such as Mg2+, Ca2+, Ba2+. The sample containing 23 mol% strontium fluoride exhibits the maximum emission cross section of 7.58 x 10(-21) cm(2), the broadest full width at half-maximum of 65 nm and the longer lifetime of 8.6 ms among the alkaline-earth metal modified fluorophosphates glasses studied. The Judd-Ofelt intensity parameter Omega(6)s, the emission cross sections and the full widths at half-maximum in the Er3+-doped fluorophosphate glasses studied are larger than in the silicate and phosphate glasses.
Resumo:
Er3+:Yb3+ codoped tellurite-fluorophosphate (TFP) glass ceramic exhibits much stronger upconversion luminescence. The intensity of the 540 nm green light and 651 nm red light of the TFP glass ceramic is 120 times and 44 times stronger than that of the fluorophospahte (FP) glass, respectively. XRD analysis shows that the nanocrystal in TFP glass ceramic is SrTe5O11. TFP glass ceramic also displays much higher upconversion fluorescence lifetime and crystallization stability. The narrow and strong peak at 540 nm is very ideal for practical upconversion luminescence realization. This work is a new trial for exploring non-PbF2 involved nanocrystal upconversion glass ceramics.
Resumo:
Er3+ doped multicomponent fluoride based glass was prepared. These precursor fluoride glass samples were then heated using different schedules. Crystalline phase particles were successfully precipitated in the multicomponent fluoride glass samples after heat treatment. The influence of heat treatment on the spectroscopic properties of Er3+ in multicomponent fluoride based glass samples were discussed. Small changes of the Judd-Ofelt parameters Omega(i) (i = 2,4,6) were found in multicomponent fluoride glass samples before and after heat treatment compared to oxyfluoride telluride glass. Preparation conditions used to produce transparent multicomponent fluoride glass ceramics doped with rare-earth ions are discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Transparent glass ceramics have been obtained by nucleation and growth of Y2Te6O15 or Er2Te5O13 cubic phase in a new Er3+-doped oxyfluoride tellurite glass. Effect of beat treatment on absorption spectra, luminescence and up-conversion properties in the oxyfluoride tellurite glass has been investigated. With heat treatment the ultraviolet absorption edge red shifted evidently for the oxyfluoride telluride glass. The near infrared emission that corresponds to Er3+:I-4(13/2)-> I-4(15/2) can be significantly enhanced after heat treatment. Under 980 nm LD pumping, red and green up-conversion intensity of Er3+ in the glass ceramic can be observed much stronger than that in the base glass. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate broadband optical amplification at 1.3 mu m in silicate glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals with 980 nm excitation for the first time. The optical gain efficiency is calculated to be about 0.283 cm(-1) when the excitation power is 1.12 W. The optical gain shows similar wavelength dependence to luminescence properties. (C) 2007 Optical Society of America.
Resumo:
An interesting fluorescence intensity reverse photonic phenomenon between red and green fluorescence is investigated. The dynamic range. of intensity reverse between red and green fluorescence of Er( 0.5) Yb( 3): FOV oxyfluoride nanophase vitroceramics, when excited by 378.5nm and 522.5nm light respectively, is about 4.32 x 10(2). It is calculated that the phonon- assistant energy transfer rate of the electric multi- dipole interaction of {(4)G(11/2)( Er3+) -> F-4(9/2)( Er3+), F-2(7/2)( Yb3+). F-2(5/2)( Yb3+)} energy transfer of Er( 0.5) Yb( 3): FOV is around 1.380 x 10(8) s(-1), which is much larger than the relative multiphonon nonradiative relaxation rates 3.20 x 10(5) s(-1). That energy transfer rate for general material with same rare earth ion's concentration is about 1.194 x 10(5) s(-1). These are the reason to emerge the unusual intensity reverse phenomenon in Er( 0.5) Yb( 3): FOV. (C) 2007 Optical Society of America.
Resumo:
对透光性良好的Cr^3+:Al2O3透明多晶陶瓷的光谱性能进行了研究,其吸收光谱中吸收峰与单晶红宝石相一致,按吸收光谱和Tanabe-Sugano能级图,算出其晶场强度参数Dq及Racah参数B分别为1792cm^-1,689cm^-1,Dq/B=2.6,陶瓷中Cr^3+离子所处格位的晶体场强比单晶弱一些,但Cr^3+:Al2O3透明陶瓷仍属于强场晶体材料;当Cr^3+掺杂浓度到达0.8wt%时,陶瓷的发射谱仍保持较好的R线发射;随Cr^3+掺杂浓度的增大,激发峰位发生“红移”.在Cr^3+:Al2O3透
Resumo:
Nd3+-doped Y2-2x La-2x O-3 (x = 0.08) transparent ceramics were fabricated by conventional fabrication process. Spectroscopic properties of the samples were investigated. The absorption band of Nd3+ : Y1.84La0.16O3 was broad covering the wavelength range 780-850 nm. When doped with 1.5at% Nd3+, the cross sections of the sample at 820 nm and laser diode pumped 808 nm were 1.81 x 10(-20) cm(2) and 1.54 x 10(-20) cm(2), respectively. The strongest emission peak of the sample was centered at 1078 mn with long fluorescent lifetime, broad emission bandwidth and high quantum efficiency. Because of the additive La2O3, the spectroscopic quality parameter (X-Nd) of matrix was' decreased from 1.6 to 0.46, thus the fluorescence branch ratio of F-4(3/2) - (4) I-11/2 transition was increased to 56.82%. These properties of Nd3' : Y1.84La0.16O3 transparent ceramic are benefitial to achieve high efficient laser output and ultrashort modelocked pulse.
Resumo:
Transparent polycrystalline MgO and TiO2 codoped Al2O3 ceramics were fabricated by conventional solid-state pressureless processing. The absorption, emission and excitation spectra of ( Mg, Ti : Al2O3 ceramics were measured. Owing to charge compensation of Mg2+, only UV absorption around 250nm was observed due to O2- -> Ti4+ charge transfer transitions (CT) when Ti content was low. As a result, the emission peaks of isolated Ti4+ ion located at 280-290nm and 410-420nm were observed. Besides absorption peak of V, ion, the characteristic absorption peak of V, ion centered at 490nm was observed in Mg, Ti) : Al2O3 ceramics when Ti content was high. The emission spectra of Ti3+, ion in polycrystalline Al2O3 ceramics coincide with that of Ti: Al2O3 single crystal.
Resumo:
Transparent polycrystalline Cr:Al2O3 ceramics were synthesized by conventional pressureless synthesis processing. The absorption and emission spectra of Cr:Al2O3 ceramics specimens before and after annealing were measured at room temperature. It was discovered that the emission spectra of Cr4+ in Al2O3 octahedral coordination site is in infrared wavelength range of 1100-1600 nm. The emission peak of Cr4+ is centered at 1223 nm, which is similar to that of Cr4+ in tetrahedral site. Al2O3 has smaller lattice constant, resulting in the larger crystal field strength, so there is a blue shift in the peak of Cr4+:Al2O3 ceramics compared to those of other Cr4+-doped crystals. And the emission band is much narrower with full width at half maximum Delta lambda 37 nm.
Resumo:
由溶胶一凝胶/燃烧合成结合法合成了Nd:YAG(掺钕钇铝石榴石,neodymium—doped yttrium aluminium garnet)粉体,用真空烧结法制备了Nd:YAG透明陶瓷。研究了显微结构随烧结温度和保温时间的变化,并对透明陶瓷的晶界结构和成分分布进行了表征。随着烧结温度的提高和保温时间的延长,Nd:YAG陶瓷的密度增大,晶形发育完整,透过率提高。晶粒内部和晶界的化学组成基本相同。所制备的Nd:YAG透明陶瓷在激光工作波长1064nm的透过率达到75%。
Resumo:
采用传统陶瓷烧结工艺,在无压还原气氛中低温制备了Yb^3+掺杂量高达10%(按摩尔计)的透明性良好的氧化镧钇激光陶瓷,研究了其在室温的吸收光谱、发射光谱以及荧光寿命。结果表明:掺Yb^3+氧化镧钇透明激光陶瓷具有宽的吸收和发射光谱以及长的荧光寿命。吸收峰位于902,942nm和968nm处,吸收截面分别为0.31×10^-20,0.45×10^-20cm^2和0.53×10^-20cm2:主发射峰位于1032nm和1075nm处,发射截面分别为1.05×10^-20cm^2和0.87×10^-20cm ^
Resumo:
采用传统无压烧结工艺制备出透明性良好的掺Cr3+氧化铝陶瓷;测定了陶瓷的吸收光谱、发射光谱和激发光谱。结果表明,氧化铝陶瓷吸收峰与红宝石单晶一致,吸收截面大小与单晶相近;陶瓷中Cr3+离子所处格位的晶体场强较单晶弱,但其发射谱仍有较好的锐线发射;陶瓷中微量添加剂以及晶界的存在使得Al2O3晶胞发生畸变,造成其发射峰宽化。
Resumo:
It was first reported the spectral properties of a low-temperature sintered transparent Yb: Y2-2x La-2x O-3 laser ceramics. Yb: Y2-2x La-2x O-3 laser ceramics have broad absorption band and large absorption cross- section of 4.0 x 10(-20) cm(2) at wavelengths 977nm of the highest absorption peak. Its fluorescence lifetime is 1.1 ms, and the emission cross-sections are 1.0 x 10(-20) cm(2) and 0.7 x 10(-20) cm(2) at wavelengths 1033nm and 1077nm, respectively. All the optical properties are similar to those of single crystals.
Resumo:
采用传统无压烧结工艺在氢气氛下制备Al2O3透明陶瓷。实验结果表明:MgO和La2O3复合添加时,随着La2O3掺杂量的增加体积密度总体上保持上升的趋势。随着保温时间的延长,陶瓷的致密化程度增大,残余气孔逐步排出,晶粒进一步长大。采用La2O3和MgO复合添加比单独掺入MgO陶瓷样品透过率更高,掺杂效果更好。在烧结温度为1750℃,保温时问为1h条件下,在波艮为300~800nm测试范围内,陶瓷样品的全透过率大于82%,最大值为86%。