98 resultados para Deformable face mask


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subspace learning is the process of finding a proper feature subspace and then projecting high-dimensional data onto the learned low-dimensional subspace. The projection operation requires many floating-point multiplications and additions, which makes the projection process computationally expensive. To tackle this problem, this paper proposes two simple-but-effective fast subspace learning and image projection methods, fast Haar transform (FHT) based principal component analysis and FHT based spectral regression discriminant analysis. The advantages of these two methods result from employing both the FHT for subspace learning and the integral vector for feature extraction. Experimental results on three face databases demonstrated their effectiveness and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple method to directly pattern polymer-based photo luminescent material, i.e. a prepatterned mask is placed a close distance above it. The final structure is a positive replica of the lateral structures in the mask with submicrometer resolution. The comparison of luminescence efficiency before and after patterning indicates almost no degradation in optical property of the material during the experiments. The mechanism of pattern formation is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polymer dispersion consisting of soft latex spheres with a diameter of 135 nm was used to produce a crystalline film with face-centered cubic (fcc) packing of the spheres. Different from conventional small-molecule and hardsphere colloidal crystals, the crystalline latex film in the present case is soft (i.e., easily deformable). The structural evolution of this soft colloidal latex film under stretching was investigated by in-situ synchrotron ultra-small-angle X-ray scattering. The film exhibits polycrystalline scattering behavior corresponding to fcc structure. Stretching results not only in a large deformation of the crystallographic structure but also in considerable nonaffine deformation at high draw ratios. The unexpected nonaffine deformation was attributed to slippage between rows of particles and crystalline grain boundaries. The crystalline structure remains intact even at high deformation, suggesting that directional anisotropic colloidal crystallites can be easily produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a straightforward method for patterning thin films of polymers, i.e. a prepatterned mask is used to induce self-assembly of polymers and the resulting pattern is the same as the lateral structures in the mask on a submicrometre length scale, The patterns can be formed at above T-g + 30 degreesC in a short time and the external electric field is not crucial. Electrostatic force is assumed to be the driving force for the pattern transfer. Viscous fingering and novel stress-relief lateral morphology induced under the featureless mask are also observed and the formation mechanisms are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

China is a mountainous country in which geological hazards occurred frequently, especially in the east of China. Except the geology, topography and extreme climate, the large scale human activities have become a major factor to landslides. Typical human activities which induced landslides are fill, cut and underground mining. On the topic of the deformation mechanism and slope stability, taking three different man-made slopes as examples, deformation mechanism and slope stability were studied by several methods, such as field work, numerical modeling and monitor. The details are as following: (1) The numerical modeling approach advantages over other conventional methods such as limit methods, so the numerical modeling is the major tool in this thesis. So far, there is no uniform failure criterion for numerical simulation. The failure criterion were summarized and analyzed firstly, subsequently the appropriate criterion was determinated. (2) Taking 220kV Yanjin transformation substation fill slope as example, the deformable characteristic, unstable mode and laboratory tests were studied systematically. The results show: the slope deformation was probably caused by a combination effect of unfavorable topographic, geological and hydro geological conditions, and external loading due to filling. It was concluded that the creep deformation of the slope was triggered by external loading applied at the back of the slope. In order to define the calculating parameters, a set of consolidated drained (CD) tests, consolidated undrained (CU) tests, repeated direct shear tests and UCS tests were carried out. The stability of the slope before and after reinforcement was assessed using 3D numerical modeling and shear strength reduction technique. The numerical modeling results showed: the factor of safety (FOS) of the slope was 1.10 in the natural state, and reduced to 1.03 after fill, which was close to the critical state and it caused creeping slip or deformation under rainfall. The failure surface in the slope is in active shear failure, whereas tensile failure occurs at the slope crest. After the site was reinforced with piles, the FOS was 1.27. Therefore, the slope is stable after reinforcement measures were taken. (3) The cut slope stability is a complex problem. Taking the left cut slope of Xiangjiaba as example in this thesis, the deformation and slope stability were studied systematically by numerical modeling and monitor methods. The numerical results show: the displacement is gradually increasing along with the cutting, and the largest displacement is 27.5mm which located at the bench between the elevation 340 and 380. Some failure state units distribute near the undermining part and there is no linked failure state occurred from crest to bottom during cutting. After cutting, some failure units appeared at the ground surface between elevation 340 and 360. The increasing tense stress made the disturbed rock failed. The slope is stable after cutting by the monitor method, such as surface monitor, multipoint displacement meter, inclinometer and anchor cable tensometer. (4) The interaction between underground mining and slope stability is a common situation in mountainous. The slope deformation mechanism induced by underground mining may contributed significantly to slope destabilization. The Mabukan slope in xiangjiaba was analyzed to illustrate this. Failure mechanism and the slope stability were presented by numerical modeling and residual deformation monitor. The results show: the roof deformed to the free face and the floor uplift lightly to the free face. The subsidence basin is formed, but the subsidence and the horizontal movement is small, and there is no failure zone occurred. When the underground mining is going on, the roof deformation, subsidence and the horizontal movements begin increasing. The rock deformation near the free face is larger than the ground surface, and the interaction between these coal seams appeared. There are some tensile failures and shear failures occurred on the roof and floor, and a majority of failure is tensile failure. The roof deformation, subsidence and the horizontal movements increased obviously along with the underground mining. The failure characteristic is shear failure which means the tensile stress transformed to the compressive stress. So the underground mining will induced tensile stress first which lead to structure crack, subsequently the compressive stress appeared which result in slippage. The crest was subjected to horizontal tension which made the rock crack along with the joint. The long term residual deformation monitor demonstrates that the slope is stable after the underground mining stopped.