252 resultados para Cuyo Region
Resumo:
A new ultraviolet photodetector of employing p menus type GaN (p(-)-GaN) as the active layer is proposed. It is easy to obtain the p(-)-GaN layer with low carrier concentration. As a result, the depletion region can be increased and the quantum efficiency can be improved. The influence of some structure parameters on the performance of the new device is investigated. Through the simulation calculation, it is found that the quantum efficiency increases with the decrease of the barrier height between the metal electrode and the p(-)-GaN layer, and it is also found that the quantum efficiency can be improved by reducing the thickness of the p(-)-GaN layer. To fabricate the new photodetector with high performance, we should employ thin p(-)-GaN layer as the active layer and reduce the Schottky barrier height.
Resumo:
Semiconductor saturable absorber mirrors (SESAMs) with GaAs/air interface relaxation region have less nonsaturable loss than those with low temperature grown In0.25Ga0.75As relaxation region. A thin layer Of SiO2 and a high reflectivity film Of Si/(SiO2/Si)(4) were coated on the SESAMs, respectively in order to improve the SESAM's threshold for damage. The passively continuous wave mode-locked lasers with two such SESAMs were demonstrated, and the SESAM with high reflectivity film of Si/(SiO2/Si)(4) is proved to be helpful for high output power. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.
Resumo:
A high-power AlGaInP laser diode with current-injection-free region near the facet is successfully fabricated by metaorganic chemical vapor deposition (MOCVD) using the (100) direction n-GaAs substrates with a misorientation of 15 deg toward the (011) direction. The maximum continuous wave output power is about 90 mW for the traditional structure. In comparison, the maximum output power is enhanced by about 67%, and achieves 150 mW for LDs with current-infection-free regions. The fundamental transverse-mode operation is obtained up to 70 mW. Output characteristics at high temperatures are also improved greatly for an LD with a current-injection-free region, and the highest operation temperature is 70 C at 50 mW without kink. The threshold current is about 33 mA, the operation current and the slope efficiency at 100 mW are 120 mA and 0.9 mW/mA, respectively. The lasing wavelength is 658.4 nm at room-temperature 50 mW. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We have proposed a new superluminescent diodes (SLD) aimed at wide spectrum-quantum dot superluminescent diodes (QD-SLD), which is characterized by the introduction of a self-assembled asymmetric quantum dot pairs active region into conventional SLID structure. We investigated the structure and optical properties of a bilayer sample with different InAs deposition amounts in the first and second layer. We find that the structure of a self-assembled asymmetric quantum dot pairs can operate up to a 150 nm spectral width. In addition, as the first QDs' density can modulate the density of the QDs on the second layer, due to relatively high QDs density of the first layer, we can get the strong PL intensity from a broad range. We think that for the broad spectral width and the strong PL intensity, this structure can be a promising candidate for QW-SLD. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Tunnel-regenerated multiple-active-region (TRMAR) light-emitting diodes (LEDs) with high quantum efficiency and high brightness have been proposed and fabricated. We have proved experimentally that the efficiency of the electrical luminescence and the on-axis luminous intensity of such TRMAR LEDs scaled linearly approximately with the number of the active regions. The on-axis luminous intensity of such TRMAR LEDs with only 3 mum GaP current spreading layer have exceeded 5 cd at 20 mA dc operation under 15 degrees package. The high-quantum-efficiency and high-brightness LEDs under the low injection level were realized. (C) 2001 American Institute of Physics.
Resumo:
A novel semiconductor laser structure is put forward to resolve the major difficulties of high power laser diodes. In this structure, several active regions are cascaded by tunnel junctions to form a large optical cavity and to achieve super high efficiency. This structure can solve the problems of catastrophic optical damage of facet, thermal damage and poor light beam quality effectively. Low-pressure metalorganic chemical vapor deposition method is adopted to grow the novel semiconductor laser structures, which are composed of Si:GaAs/C:GaAs tunnel junctions, GaAs/InGaAs strain quantum well active regions. External differential quantum efficiency as high as 2.2 and light power output of 2.5 W per facet (under 2A drive current) are achieved from an uncoated novel laser device with three active regions.
Resumo:
A surface-region-purification-induced p-n junction, a puzzle discovered at Brookhaven National Laboratory, in a silicon-on-defect-layer (SODL) material has been explored by carrying out various annealing conditions and subsequent measurements on electrical properties. The origin of the pn junction has been experimentally investigated. Furthermore, the p-n junction has been transformed into a p-i-n electrical structure by adding a high temperature annealing process to the previously used SODL procedure, making the SODL material approach silicon on insulator (SOI). The control of the initial oxygen amount in the silicon material is suggested to be critical for the experimental results.
Resumo:
We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.
Resumo:
Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.
Resumo:
The not only lower but also uniform MEMS chip temperatures can he reached by selecting suitable boiling number range that ensures the nucleate boiling heat transfer. In this article, boiling heat transfer experiments in 10 silicon triangular microchannels with the hydraulic diameter of 55.4 mu m were performed using acetone as the working fluid, having the inlet liquid temperatures of 24-40 degrees C, mass fluxes of 96-360 kg/m(2)s, heat fluxes of 140-420 kW/m(2), and exit vapor mass qualities of 0.28-0.70. The above data range correspond to the boiling number from 1.574 x 10(-3) to 3.219 x 10(-3) and ensure the perfect nucleate boiling heat transfer region, providing a very uniform chip temperature distribution in both streamline and transverse directions. The boiling heat transfer coefficients determined by the infrared radiator image system were found to he dependent on the heat Axes only, not dependent on the mass Axes and the vapor mass qualities covering the above data range. The high-speed flow visualization shows that the periodic flow patterns take place inside the microchannel in the time scale of milliseconds, consisting of liquid refilling stage, bubble nucleation, growth and coalescence stage, and transient liquid film evaporation stage in a full cycle. The paired or triplet bubble nucleation sites can occur in the microchannel corners anywhere along the flow direction, accounting for the nucleate boiling heat transfer mode. The periodic boiling process is similar to a series of bubble nucleation, growth, and departure followed by the liquid refilling in a single cavity for the pool boiling situation. The chip temperature difference across the whole two-phase area is found to he small in a couple of degrees, providing a better thermal management scheme for the high heat flux electronic components. Chen's [11 widely accepted correlation for macrochannels and Bao et al.'s [21 correlation obtained in a copper capillary tube with the inside diameter of 1.95 mm using R11 and HCFC123 as working fluids can predict the present experimental data with accepted accuracy. Other correlations fail to predict the correct heat transfer coefficient trends. New heat transfer correlations are also recommended.