288 resultados para Conduction band structure
Resumo:
High spin states in Tl-188 have been investigated via the Gd-157(Cl-35,4n) reaction at beam energy of 170 MeV. A rotational band built on the pi h(9/2) circle times nu(13/2) configuration with oblate deformation has been established. Considering the similarity between the band structure observed in odd-odd Tl nuclei, spin values have been tentatively proposed for the new band in Tl-188. The pi h(9/2) circle times nu(13/2) oblate band in Tl-188 shows low-spin signature inversion, and it can be interpreted qualitatively by the two quasiparticle plus rotor model including a J-dependent p-n residual interaction.
Resumo:
The high spin levels of a very neutron-rich Zr-104 nucleus have been reinvestigated by measuring the prompt. rays in the spontaneous fission of Cf-252. The ground-state band has been confirmed. A new sideband has been identified with a band-head energy at 1928.7 keV. The projected shell model is employed to investigate the band structure of Zr-104. The results of calculated levels are in good agreement with the experimental data, and suggest that the new band in Zr-104 may be based on the neutron nu 5/2(-)[532] circle times nu 3/2(+)[411] configuration.
Resumo:
We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB2 (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB2 might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.
Resumo:
The influence of muffin-tin approximation on energy band gap was studied using LMTO-ASA (Linear Muffin-Tin Orbital-Atomic Sphere Approximation) approach. Since the diverse data are available for LaX(X=N, P, As, Sb), they are presented in our research as an example in order to test the reliability of our results. Four groups of muffin-tin radii were chosen, they were the fitted muffin-tin radii based on the optical properties of the crystals (the first), 1 : 1 for La : X(the second), 1.5 : 1 for La : X(the third), and a group of radii derived by making the charge in the interstitial space to be zero(the fourth). The results show that the fitted muffin-tin radii (the first group) give the best results compared with experimental values, and the predicted energy band gaps are very sensitive to the choice of muffin-tin radius in comparison with the other groups. The second and the third delivered results somewhere in between, while the fourth provided the worst results compared with the other groups. For the same crystal, with the increase of muffin-tin radius of lanthanum, the calculated energy band gaps decreased, going from semi-conductor to semimetal. This again clearly indicated the sensitivity of energy band structure on muffin-tin approximation.
Resumo:
A theoretical model is proposed to describe the microscopic processes involved in the ablation in fused silica induced by femtosecond-laser pulse. Conduction-band electron (CBE) can absorb laser energy, the rate is calculated by quantum mechanical method and classical method. CBE is produced via photoionization (PI) and impact ionization (II). The PI and II rates are calculated by using the Keldysh theory and double-flux model, respectively. Besides the CBE production, we investigate laser energy deposition and its distribution. The equation of energy diffusion in physical space is resolved numerically. Taking energy density E-dep=54 kJ/cm(3) as the criterion, we calculate damage threshold, ablation depth, and ablation volumes. It is found that if energy diffusion is considered, energy density near sample surface is reduced to 1/10, damage threshold is enhanced more than 30%, ablation depth is increased by a factor of 10. Our theoretical results agree well with experimental measurements. Several ultrafast phenomena in fused silica are also discussed. (C) 2004 American Institute of Physics.
Resumo:
We have investigated the damage for ZrO2/SiO2 800 nm 45 degrees high-reflection mirror with femtosecond pulses. The damage morphologies and the evolution of ablation crater depths with laser fluences are dramatically different from that with pulse longer than a few tens of picoseconds. The ablation in multilayers occurs layer by layer, and not continuously as in the case of bulk single crystalline or amorphous materials. The weak point in damage is the interface between two layers. We also report its single-short damage thresholds for pulse durations ranging from 50 to 900 fs, which departs from the diffusion-dominated tau(1/2)(p) scaling. A developed avalanche model, including the production of conduction band electrons (CBE) and laser energy deposition, is applied to study the damage mechanisms. The theoretical results agree well with our measurements. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new pump and probe experimental system was developed, the pump pulse duration of which is stretched and is much longer than that of the probe pulse. Using this system, time-resolved electronic excitation processes and damage mechanisms in CaF2 crystals were studied. The measured reflectivity of the probe pulse begins to increase at the peak of the pump pulse and increases rapidly in the latter half of the pump pulse, when the pump pulse duration is stretched to 580fs. Our experimental results indicate that both multiphoton ionization and impact ionization play important roles in the generation of conduction band electrons, at least they do so when the pump pulse durations are equal to or longer than 580fs.
Resumo:
利用有限元方法建立了二维模型,研究了飞秒激光作用下石英玻璃中导带电子的产生、激光能量的沉积、导带电子和能量扩散等微观过程.计算了导带电子扩散引起的局部净电荷及其形成的静电场分布,初步揭示了微爆炸的演化过程.
Resumo:
Single-shot laser damage threshold of MgO for 40-986 fs, 800 nm laser pulses is reported. The pump-probe measurements with femtosecond pulses were carried out to investigate the time-resolved electronic excitation processes. A theoretical model including conduction band electrons (CBE) production and laser energy deposition was applied to discuss the roles of multiphoton ionization (MPI) and avalanche ionization in femtosecond laser-induced dielectric breakdown. The results indicate that avalanche ionization plays the dominant role in the femtosecond laser-induced breakdown in MgO near the damage threshold. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
研究了超短脉冲激光照射下LiF晶体的破坏机理及其超快动力学过程,利用扫描电镜和原子力显微镜等测试手段,观测了飞秒激光照射下LiF晶体的烧蚀形貌。利用烧蚀面积与激光脉冲能量的对数关系确定了LiF晶体的破坏阈值,并利用非线性玻璃棒展宽脉宽,得到了800nm激光作用下LiF破坏阈值对激光脉宽(50~1000fs)的依赖关系;利用抽运一探针超快探测平台,探测了LiF烧蚀过程中反射率的变化。采用雪崩击穿模型,并根据晶体材料反射率与材料的介电常量的依赖关系,通过数值计算,模拟了材料烧蚀阈值与脉宽的依赖关系及材料激发过
Resumo:
激光照射下光学材料的损伤过程中,导带电子的加热和碰撞电离是非常重要的过程,影响着导带电子的产生、晶格能量的沉积和破坏.分析了Drude模型的局限性,从经典力学出发求解了周期量级激光场中导带电子的运动方程,计算了导带电子的光吸收和碰撞电离,分析了激光强度、载波相位等对碰撞电离的影响.
Resumo:
用扫描电镜(SEM)研究了氟化镁在800nm超短脉冲激光作用下的单枪表面烧蚀形貌.根据烧蚀斑面积与激光脉冲能量间的对数关系,测得烧蚀阈值与激光脉宽的关系曲线(55—750fs).计算了导带电子的双光子吸收,改进了多速率方程模型.很好地解释了实验结果.
Resumo:
We report on the damage threshold in CaF2 crystals induced by femtosecond laser at wavelengths of 800 nm and 400 nm, respectively. The dependences of ablation depths and ablation volumes on laser fluences are also presented. We investigate theoretically the coupling constants between phonon and conduction band electrons (CBE), and calculate the rates of CBE absorbing laser energy. A theoretical model including CBE production, laser energy deposition, and CBE diffusion is applied to study the damage mechanisms. Our results indicate that energy diffusion greatly influences damage threshold and ablation depth.
Resumo:
A pump and probe system is developed, where the probe pulse duration tau is less than 60 fs while the pump pulse is stretched up to 150-670 fs. The time-resolved excitation processes and damage mechanisms in the omnidirectional reflectors SiO2/TiO2 and ZnS/MgF2 are studied. It is found that as the pump pulse energy is higher than the threshold value, the reflectivity of the probe pulse decreases rapidly during the former half, rather than around the peak of the pump pulse. A coupled dynamic model based on the avalanche ionization (AI) theory is used to study the excitation processes in the sample and its inverse influences on the pump pulse. The results indicate that as pulse duration is longer than 150 fs, photoionization (PI) and AI both play important roles in the generation of conduction band electrons (CBEs); the CBE density generated via AI is higher than that via PI by a factor of 10(2)-10(4). The theory explains well the experimental results about the ultrafast excitation processes and the threshold fluences. (c) 2006 American Institute of Physics.
Resumo:
The damage in fused silica and CaF2 crystals induced by wavelength tunable femtosecond lasers is studied. The threshold fluence is observed to increase rapidly with laser wavelength lambda in the region of 250-800 nm, while it is nearly a constant for 800