156 resultados para 660205 Solar-photoelectric


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparatively low-quality silicon wafer (with a purity of almost-equal-to 99.9%) was adopted to form a silicon-on-defect-layer (SODL) structure featuring improved crystalline silicon near the defect layer (DL) by means of proton implantation and subsequent annealing. Thus, the SODL technique provides an opportunity to enable low-quality silicon wafers to be used for fabrication of low-cost solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An energy conversion efficiency of 35% was obtained at 1-sun, air mass 1.5 for a novel silicon cell having an area of 2.3 X 2.3 mm2 . cell. The critical feature of the cell structure is the inclusion of local defect layers near a p-n junction. The local defect layers were proven to hold the key to achieving the exceptionally high efficiency of the novel cell fabricated via noncomplex processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of metastable defects caused by light soaking and carrier injection on the transport of carriers in undoped a-Si:H has been investigated by a junction recovery technique. The experiments show that after light soaking or carrier injection the product of mu-p-tau-p decreases, but no detectable change in the distribution of shallow valence band tail states was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effects of the diphasic structure on the optoelectronic properties of hydrogenated microcrystalline silicon (mu c-Si:H) films prepared in a triode three-chamber plasma-enhanced chemical vapor deposition (PECVD) system. The influences of boron-compensation doping on the dark-and photo-conductivity of mu c-Si:H films are also described. A tandem solar cell with an entirely mu c-Si:H p-i-n bottom cell and an a-Si:H top cell has been prepared with an initial conversion efficiency of 8.91% (0.126 cm(2), AM1.5, 100 mW/cm(2)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline silicon (poly-Si) films(similar to 10 mu m) were grown from dichlorosilane by a rapid thermal chemical vapor deposition (RTCVD) technique, with a growth rate up to 100 Angstrom/s at the substrate temperature (T-s) of 1030 degrees C. The average grain size and carrier mobility of the films were found to be dependent on the substrate temperature and material. By using the poly-Si films, the first model pn(+) junction solar cell without anti-reflecting (AR) coating has been prepared on an unpolished heavily phosphorus-doped Si wafer, with an energy conversion efficiency of 4.54% (AM 1.5, 100 mW/cm(2), 1 cm(2)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimate for the lowest cost of SODL (silicon on defect layer) solar cell is made according to the price standard of present market. The estimate shows that the PV (photovoltaics) energy costs can be reduced from today's 25-30 cents/(kW h) to 7-8 cents/(kW h) which is comparable with the present cost of electricity generated by traditional energy sources such as fossil and petroleum fuels. The PV energy costs could be reduced to a value lower than 7-8 cents(kW h) by developing SODL technology. The SODL solar cell manufacture featuring simple processes is suitable to large scale automated assembly lines with high yield of large area cells. Some new ideas are suggested, favoring the further reduction in the cost of commercial solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High efficiency AlxGa1-xAs/GaAs heteroface solar cells have been fabricated by an improved multi-wafer squeezing graphite boat liquid phase epitaxy (LPE) technique, which enables simultaneous growth of twenty 2.3 X 2.3cm(2) epilayers in one run. A total area conversion efficiency of 17.33% is exhibited (1sun, AM0, 2.0 x 2.0cm(2)). The shallow junction cell shows more resistance to 1 MeV electron radiation than the deep one. After isochronal or isothermal annealing the density and the number of deep level traps induced by irradiation are reduced effectively for the solar cells with deep junction and bombardment under high electron fluences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlGa1-xAs/GaAs heterostructures have been grown by two different liquid phase epitaxy (LPE) modes, i.e. the supercooled and melt-etch methods, for the fabrication of highly efficient solar cells. Typical structural characteristics observed under a transmission electron microscope (TEM), an Auger energy spectrometer (AES) and corresponding device parameters were presented. The results indicated that the P+PNN+ configuration grown by the melt-etch method could be used to produce high performance, large area solar cells with effectively reducing the defects of the substrate and improving the minority carrier collection by forming a compositionally graded region in the window layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface plasmon enhanced antireflection coatings for GaAs solar cells have been designed theoretically. The reflectance of double-layer antireflection coatings (ARCs) with different suspensions of Ag particles is calculated as a function of the wavelength according to the optical interference matrix and the Mie theory. The mean dielectric concept was adopted in the simulations. A significant reduction of reflectance in the spectral region from 300 to 400 nm was found to be beneficial for the design of ARCs. A new SiO_2/Ag-ZnS double-layer coating with better antireflection ability can be achieved if the particle volume fraction in ZnS is 1%-2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron-doped hydrogenated silicon films with different gaseous doping ratios (B_2H_6/SiH_4) were deposited in a plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure of the films was investigated by atomic force microscopy (AFM) and Raman scattering spectroscopy. The electrical properties of the films were characterized by their room temperature electrical conductivity (σ) and the activation energy (E_a). The results show that with an increasing gaseous doping ratio, the silicon films transfer from a microcrystalline to an amorphous phase, and corresponding changes in the electrical properties were observed. The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions. The measurements of the Ⅰ-Ⅴ characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04, and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it. The junction with such a recombination layer has a small resistance, a nearly ohmic contact, and a negligible optical absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermal model for concentrator solar cells based on energy conservation principles was designed. Under 400X concentration with no cooling aid, the cell temperature would get up to about 1200℃.Metal plates were used as heat sinks for cooling the system, which remarkably reduce the cell temperature. For a fixed concentration ratio, the cell temperature reduced as the heat sink area increased. In order to keep the cell at a constant temperature, the heat sink area needs to increase linearly as a function of the concentration ratio. GaInP/GaAs/Ge triple-junction solar cells were fabricated to verify the model. A cell temperature of 37℃ was measured when using a heat sink at 400X concentratration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the idea of tilting a photoelectric conversion device,the monocrystalline silicon p-n junction device was tilted to make light incident upon the device at an angle of 45° with the normal of the device surface,resulting in infrared multiple-internal-reflection inside the device.The internal reflection leads to path length increase of infrared light,making the enhancement of infrared absorption of the device.An increase of 11% in energy conversion efficiency has been obtained through tilting the device.