161 resultados para post preparation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO films were deposited on Si(100) substrates at 300℃ by metal - organic chemical vapor deposition(MOCVD). The effect of different ratios of DEZn to N2O on crystal quality was analyzed. It is found that the optimum ratio of DEZn to N2O is 2.1. And in this optimum growth condition, X - ray diffraction (XRD) and scanning probe morphology (SPM) images indicate that the films grow along the c - axis orientation. ZnO film exhibits a strong UV optical absorption near 388 nm. And the optical absorbance is close to zero,that indicates nearly 100% optical transparence. Photoluminescence (PL) spectrum shows only strong near - band - edge emissions with little or no deep - level emission related to defects. The full - width at half - maximum (FWHM) of the ultraviolet emission peak is 80meV. The results indicate that better crystal quality can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

50mm SiC films with high electrical uniformity are grown on Si(111) by a newly developed vertical low-pressure chemical vapor deposition (LPCVD) reactor.Both in-situ n- and p-type doping of 3C-SiC are achieved by intentional introduction of ammonia and boron into the precursor gases.The dependence of growth rate and surface morphology on the C/Si ratio and optimized growth conditions is obtained.The best electrical uniformity of 50mm 3C-SiC films obtained by non-contact sheet resistance measurement is ±2.58%.GaN films are grown atop the as-grown 3C-SiC/Si(111) layers using molecular beam epitaxy (MBE).The data of both X-ray diffraction and low temperature photoluminescence of GaN/3C-SiC/Si(111) show that 3C-SiC is an appropriate substrate or buffer layer for the growth of Ⅲ-nitrides on Si substrates with no cracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-insulating (SI) InP wafers of 50 and 75mm in diameter can be obtained by annealing of undoped liquid encapsulated Czochralski (LEC) InP at 930 ℃ for 80h. The annealing ambient can be pure phosphorus (PP) or iron phosphide (IP). The IP-SI InP wafers have good electrical parameters and uniformity of whole wafer. However, PP-SI InP wafers exhibit poor uniformity and electrical parameters, Photoluminescence which is subtle to deep defect appears in IP-annealed semi-insulating InP. Traps in annealed SI InP are detected by the spectroscopy of photo-induced current transient. The results indicate that there are fewer traps in IP-annealed undoped SI InP than those in as-grown Fe-doped and PP-undoped SI-undoped SI InP. The formation mechanism of deep defects in annealed undoped InP is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erbium-doped silica glasses were made by sol-gel process. Intensive photoluminescence (PL) spectra from the Er-doped silica glasses at room temperature were measured. A broadband peak at 1535 ma, corresponding to the I-4(13/2)-I-4(15/2) transition, its full width at half-maximum (FWHM) of 10 nm, and a shoulder at 1546 nm in the PL spectra were observed. At lower temperatures, main line of 1535 nm and another line of 1552 Mn instead of 1546 nm appear. So two types of luminescence centers must exist in the samples at different temperature. The intensity of main line does not decrease obviously with increasing temperature. By varying the Er ion concentration in the range of 0.2 wt% - 5wt%, the highest photoluminescence intensity was obtained at 0.2wt% erbium doped concentration. Luminescence intensity decreases with increasing erbium concentration. Cooperative upconversion was used to explain the concentration quenching of luminescence from silica glass with high erbium concentration. Extended X-ray absorption fine structure measurements were carried out. It was found that the majority of the erbium impurities in the glasses have a local structure of eight first neighbor oxygen atoms at a mean distance of 0.255 nm, which is consistent with the typical coordination structure of rare earth ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition rate and refractive index for a-Si(amorphous silicon) and SiO2 grown by PECVD were studied under different pressure, power and proportion of reactant source gases. a-Si/SiO2 MQW(multi-quantum well) with high quality was deposited under suitable conditions, in which the thickness of the a-Si layers is several nanometers. The sample of a-Si/SiO2 MQW was crystallized by laser annealing. Because of the confinement of the SiO2 layers, crystalline grains were formed during the a-Si layers were being crystallized. The size of the crystalline grains were not more than the thickness of the a-Si layers. The a-Si layers were crystallized to be nanometer crystalline silicon(nc-Si), therefore, nc-Si/SiO2 MQW was formed. For the a-Si/SiO2 MQW with 4.0nm a-Si wells separated by 5nm SiO2 barries, most of the a-Si were crystallized to silicon grains after laser annealing,and the size of the grains is 3.8nm. Strong photoluminescence with three peaks from the nc-Si/SiO2 MQW was detected at 10K. The wavelength of the peaks were 810nm, 825nm and 845nm, respectively.