228 resultados para in-situ infrared spectroscopy
Resumo:
The icefish (Neosalanx taihuensis) of Lake Chaohu, China, foraged almost exclusively on crustacean zooplankton in both spring and summer. The icefish showed diurnal feeding periodicity, with peak feeding in the morning. No food was observed in icefish guts collected at night. Our results indicate that that the icefish was a particulate feeder and light intensity greatly affected its foraging on zooplankton. Daily consumption of zooplankton by icefish varied significantly both diurnally and among seasons, which ranged from 0.22 to 2.23 g (wet weight) per 100 g wet fish weight at temperatures between 16.3 degrees C (spring) and 28.8 degrees C (summer).
Resumo:
Common carp Cyprinus carpio genomic DNA repetitive sequence CR1 has been DIG-labeled and hybridized in situ against chromosomes of red common carp (Cyprinus carpio L. Xingguo red var.). It is found that the repetitive sequence CR1 is mainly localized at the centromeric regions of chromosomes of the red common carp, The application of the chromosomal in situ hybridization technique on fish and the relationship between CR1 repetitive sequence distribution and its function have been discussed.
Resumo:
Undoped, S-doped and Fe-doped InP crystals with diameter up to 4-inch have been pulled in drop 10 0 drop -direction under P-rich condition by a rapid P-injection in situ synthesis liquid encapsulated Czochralski (LEC) method. High speed photoluminescence mapping, etch-pit density (EPD) mapping and scanning electron microscopy have been used to characterize the samples of the single crystal ingots. Dislocations and electrical homogeneity of these samples are investigated and compared. By controlling the thermal field and the solid-liquid interface shape, 4-inch low-EPD InP single crystals have been successfully grown by the rapid P-injection synthesis LEC method. The EPD across the wafer of the ingots is less than 5 x 10(4) cm(-2). Cluster defects with a pore center are observed in the P-rich LEC grown InP ingots. These defects are distributed irregularly on a wafer and are surrounded by a high concentration of dislocations. The uniformity of the PL intensity across the wafer is influenced by these defects. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An effective method is developed to fabricate metallic microcircuits in diamond anvil cell (DAC) for resistivity measurement under high pressure. The resistivity of nanocrystal ZnS is measured under high pressure up to 36.4 GPa by using designed DAC. The reversibility and hysteresis of the phase transition are observed. The experimental data is confirmed by an electric current field analysis accurately. The method used here can also be used under both ultrahigh pressure and high temperature conditions.
Resumo:
N-p-n Si/SiGe/Si heterostructures have been grown by a disilane (Si2H6) gas and Ge solid sources molecular beam epitaxy system using phosphine (PH3) and diborane (B2H6) as n- and p-type in situ doping sources, respectively. Adopting an in situ doping control technology, the influence of background B dopant on the growth of n-Si emitter layer was reduced, and an abrupt B dopant distribution from SiGe base to Si emitter layer was obtained. Besides, higher n-type doping in the surface region of emitter to reduce the emitter resist can be realized, and it did not result in the drop of growth rate of Si emitter layer in this technology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A self-consistent calculation of the subband energy levels of n-doped quantum wells is studied. A comparison is made between theoretical results and experimental data. In order to account for the deviations between them, the ground-state electron-electron exchange interactions, the ground-state direct Coulomb interactions, the depolarization effect, and the exciton-like effect are considered in the simulations. The agreement between theory and experiment is greatly improved when all these aspects are taken into account. The ground-to-excited-state energy difference increases by 8 meV from its self-consistent value if one considers the depolarization effect and the exciton-like effect only. It appears that the electron-electron exchange interactions account for most of the observed residual blueshift for the infrared intersubband absorbance in AlxGa1-xN/GaN multiple quantum wells. It seems that electrons on the surface of the k-space Fermi gas make the main contribution to the electron-electron exchange interactions, while for electrons further inside the Fermi gas it is difficult to exchange their positions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Extremely low density self-assembled InAs quantum dots are grown by a combination technique of in situ annealing for 2 min and pause of substrate rotation during molecular beam epitaxy. The surface morphology and structural characteristics of the quantum dots are scrutinized by atomic force microscopy and photoluminescence spectra. It is found that the quantum dot size and density increase as the InAs deposition amount rises. Quantum dots with a density between 2.5 x 10(7) cm(-2) and 2.2 x 10(8) cm(-2) are 2-5 nm in height and 18-39 nm in diameter. It is believed that as-grown InAs nanodots may be of important value for future single quantum dot research.
Resumo:
Rapid thermal annealing (RTA) has been demonstrated as an important way to improve the crystal quality of GaInNAs(Sb)/GaAs quantum wells. However little investigation has been made into their application in laser growth, especially at a wavelength of 1.55 mu m. When a GaAs-based laser is grown, AlGaAs is usually used for cladding layers. The growth of the p-cladding layer usually takes 30-45 min at a growth temperature higher than that of the GaInNAs(Sb) active region, which affects the material quality. To investigate this effect, various post-growth annealing processes were performed to simulate this process. Great enhancement of the PL intensity was obtained by a two-step process which consisted of annealing first at 700 degrees C for 60 s and then at 600 degrees C for 45 min. We transferred this post-growth annealing to in situ annealing. Finally, a GaInNAsSb laser was grown with a 700 degrees C in situ annealing process. Continuous operation at room temperature of a GaAs-based dilute nitride laser with a wavelength beyond 1.55 mu m was realized for the first time.
Resumo:
Using Al-Mg and Al-Mg-Y alloys as raw materials and nitrogen as gas reactants, AIN powders and composite AIN powders by in-situ synthesis method were prepared. AIN lumps prepared by the nitriding of Al-Mg and Al-Mg-Y alloys have porous microstructure, which is favorable for pulverization. They have high purity, containing 1.23 % (mass fraction) oxygen impurity, and consisted of AIN single phase . The average particle size of AIN powders is 6.78 mum. Composite AlN powders consist of AlN phases and rare, earth oxide Y2O3 phase. The distribution of particle size of AIN powders shows two peaks. In view, of packing factor, AIN powders with such size distribution can easily be sintered to high density.
Resumo:
The heteroepitaxial growth of n-type and p-type 3C-SiC on (0001) sapphire substrates has been performed with a supply of SiH4+C2H4+H-2 system by introducing ammonia (NH3) and diborane (B2H6) precursors, respectively, into gas mixtures. Intentionally incorporated nitrogen impurity levels were affected by changing the Si/C ratio within the growth reactor. As an acceptor, boron can be added uniformly into the growing 3C-SiC epilayers. Nitrogen-doped 3C-SiC epilayers were n-type conduction, and boron-doped epilayers were p-type and probably heavily compensated.
Resumo:
AIN powders were prepared by in-situ synthesis technique. It is a reaction of binary molten Al-Mg alloys with highly pure nitrogen. It was confirmed through thermodynamics calculation that Mg element in Al-Mg alloys can decrease oxygen content in the reacting system. Thus, nitridation reaction can be performed to form AIN. Moreover, an analysis of kinetics shows that the nitridation reaction of Al-Mg alloys can be accelerated and transferred rapidly with the increment of Mg content.
Resumo:
The effects of in situ annealing treatment in the initial growth stage and In-doping during growth of the GaN on the material properties were investigated. GaN was grown by LP-MOVPE. In situ annealing reduced the full-width at half-maximum (FWHM) of X-ray rocking curves and reduced etch pit density of GaN films. It improved the optical properties of the epilayer. Undoped and In-doped GaN films of initial growth stage were investigated. It was found that morphology and optical properties were improved in In-doped samples. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
GaN epilayers on sapphire substrate grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal-type low-pressure two-channel reactor were investigated. Samples were characterized by X-ray diffraction (XRD), Raman scattering, atomic force microscopy (AFM) and photoluminescence (PL) measurements. The influence of the temperature changes between low temperature (LT) deposited GaN buffer and high temperature (WT) grown GaN epilayer on crystal quality of epilayer was extensively studied. The effect of in situ thermal annealing during the growth on improving the GaN layer crystal quality was demonstrated and the possible mechanism involved in such a growth process was discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
High-density InAs nanowires embedded in an In0.52Al0.48As matrix are fabricated in situ by molecular beam epitaxy on (100) InP. The average cross section of the nanowires is 4.5 x 10 nm(2). The linear density is as high as 70 wires/mu m. The spatial alignment of the multilayer arrays exhibit strong anticorrelation in the growth direction. Large polarization anisotropic effect is observed in polarized photoluminescence measurements. (C) 1999 American Institute of Physics. [S0003-6951(99)04134-0].
Resumo:
Polycrystalline silicon (polysilicon) has been used as an important structural material for microelectro-mechnical systems (MEMS) because of its compatibility with standard integrated circuit (IC) processes. As the structural layer of micromechanical high resonance frequency (high-f) and high quality factor (high-Q) disk resonators, the low residual stress and low resistivity are desired for the polysilicon thin films. In the present work, we investigate the effect of deposition and annealing conditions on the residual stress and resistivity for in-situ deposited low pressure chemical vapor deposition (LPCVD) polysilicon films. Low residual stress (-100 MPa) was achieved in in-situ boron-doped polysilicon films deposited at 570 degrees C and annealed at 1000 degrees C for 4 hr. The as-deposited amorphous polysilicon films were crystallized by the rapid thermal annealing and have the (111)-preferred orientation, the low tensile residual stress is expected for this annealed film, the detailed description on this work will be reported soon. The controllable residual stress and resistivity make these films suitable for high-Q and bigh-f micro-mechanical disk resonators.