102 resultados para electronic phase transitions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the hydride vapor-phase epitaxy growth of (10 (1) over bar(3) over bar)-oriented GaN thick films on patterned sapphire substrates (PSSs) (10 (1) over bar0). From characterization by atomic force microscopy, scanning electron microscopy, double-crystal X-ray diffraction, and photoluminescence (PL), it is determined that the crystalline and optical qualities of (10 (1) over bar(3) over bar) GaN epilayers grown on the cylindrical PSS are better than those on the flat sapphire. However, two main crystalline orientations (10 (1) over bar(3) over bar) and (11 (2) over bar2) dominate the GaN epilayers grown on the pyramidal PSS, demonstrating poor quality. After etching in the mixed acids, these (10 (1) over bar(3) over bar) GaN films are dotted with oblique pyramids, concurrently lining along the < 30 (3) over bar2 > direction, indicative of a typical N-polarity characteristic. Defect-related optical transitions of the (10 (1) over bar(3) over bar) GaN epilayers are identified and detailedly discussed in virtue of the temperature-dependent PL. In particular, an anomalous blueshift-redshift transition appears with an increase in temperature for the broad blue luminescence due to the thermal activation of the shallow level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the electronic structure and magnetic coupling properties of Gd doped AlN have been investigated using first-principles method. We found that in the AlN:Gd system, due to the s-f coupling allowed by the symmetry, the exchange splitting of the conduction band is much larger than that of the valence band, which makes the electron-mediated ferromagnetism possible in this material. This property is also confirmed by the energy differences between anti-ferromagnetic and ferromagnetic phase for Al14Gd2N16 with different concentrations of electrons (holes), as well as by the calculated exchange constants. The result indicates that Gd-doped AlN is a promising candidate for the applications in future spintronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model for the electronic structure of porous Si is presented. Three geometries of porous Si (wire with square cross section, pore with square cross section, and pore with circular cross section) along both the [001] and [110] directions are considered. It is found that the confinement geometry affects decisively the ordering of conduction-band states. Due to the quantum confinement effect, there is a mixing between the bulk X and GAMMA states, resulting in finite optical transition matrix elements, but smaller than the usual direct transition matrix elements by a factor of 10(-3). We found that the strengths of optical transitions are sensitive to the geometry of the structure. For (001) porous Si the structure with circular pores has much stronger optical transitions compared to the other two structures and it may play an important role in the observed luminescence. For this structure the energy difference between the direct and the indirect conduction-band minima is very small. Thus it is possible to observe photoluminescence from the indirect minimum at room temperature. For (110) porous Si of similar size of cross section the energy gap is smaller than that of (001) porous Si. The optical transitions for all three structures of (110) porous Si tend to be much stronger along the axis than perpendicular to the axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic and the magnetic structure of the Nd2Fe17N1 phase in the family of Nd-Fe-N ternary compounds have been calculated using the first-principles, spin-polarized orthogonalized linear-combination-of-atomic-orbitals method. Results are presented in the form of site-decomposed and spin-projected partial density of states. The occupation sites of the three N atoms are determined by an average radial distribution of all possible N site configurations. Both cases of N occupying the 3b and the 18g sites are studied. The results indicate that the 6c Fe sites have the maximum and the 18h Fe sites have the minimum local moments. This is in good agreement with experiment. It is concluded that the influence on the local moment due to lattice expansion is less important compared to that due to interatomic interaction between the N atom and its neighbors. The results also show the important role of N atoms in raising the Curie temperature of this compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have measured low-temperature photoluminescence (PL) and optical absorption spectra of an In0.2Ga0.8As/GaAs multiple quantum well (MQW) structure at pressures up to 8 GPa. Below 4.9 GPa, PL shows only the emission of the n = 1 heavy-hole (HH) exciton. Three new X-related PL bands appear at higher pressures. They are assigned to spatially indirect (type-II) and direct (type-I) transitions from X(Z) states in GaAs and X(XY) valleys of InGaAs, respectively, to the HH subband of the wells. From the PL data we obtain a valence band offset of 80 meV for the strained In0.2Ga0.8As/GaAs MQW system. Absorption spectra show three features corresponding to direct exciton transitions in the quantum wells. In the pressure range of 4.5 to 5.5 GPa an additional pronounced feature is apparent in absorption, which is attributed to the pseudo-direct transition between a HH subband and the folded X(Z) states of the wells. This gives the first clear evidence for an enhanced strength of indirect optical transitions due to the breakdown of translational invariance at the heterointerfaces in MQWs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structures of the zinc-blende GaN/Ga0.85Al0.15N compressively strained superlattices and quantum wells are investigated using a 6 x 6 Hamiltonian model (including the heavy hole, light hole and spin-orbit splitting band). The energy bands, wavefunctions and optical transition matrix elements are calculated. It is found that the light hole couples with the spin-orbit splitting state even at the k=0 point, resulting in the hybrid states. The heavy hole remains a pure heavy hole state at k=0. The optical transitions from the hybrid valence states to the conduction states are determined by the transitions of the light hole and spin-orbit splitting states to the conduction states. The transitions from the heavy hole, light hole and spin-orbit splitting states to the conduction states obey the selection rule Delta n=0. The band structures obtained in this work will be valuable in designing GaN/GaAlN based optoelectronic devices. (C) 1996 Academic Press Limited

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defect states in cubic GaN epilayers grown on GaAs were investigated with the photoluminescence technique. One shallow donor and two acceptors were identified to be involved in relevant optical transitions. The binding energies of the free excitons, the bound excitons. the donor and the acceptors were determined. These values are in good agreement with recent theoretical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experimental works devoted to the phenomena of mixing observed at metallic multilayers Ni/Si irradiated by swift heavy ions irradiations make it necessary to revisit the insensibility of crystalline Si under huge electronic excitations. Knowing that Ni is an insensitive material, such observed mixing would exist only if Si is a sensitive material. In order to extend the study of swift heavy ion effects to semiconductor materials, the experimental results obtained in bulk silicon have been analyzed within the framework of the inelastic thermal spike model. Provided the quenching of a boiling ( or vapor) phase is taken as the criterion of amorphization, the calculations with an electron-phonon coupling constant g(300 K) = 1.8 x 10(12) W/cm(3)/K and an electronic diffusivity D-e(300 K) = 80 cm(2)/s nicely reproduce the size of observed amorphous tracks as well as the electronic energy loss threshold value for their creation, assuming that they result from the quenching of the appearance of a boiling phase along the ion path. Using these parameters for Si in the case of a Ni/Si multilayer, the mixing observed experimentally can be well simulated by the inelastic thermal spike model extended to multilayers, assuming that this occurs in the molten phase created at the Ni interface by energy transfer from Si. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the confined crystallization and phase transition behaviors of n-octadecane in microcapsules with a diameter of about 3 Pm were studied with the combination of differential scanning calorimetry (DSC), temperature dependent Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the structural stability and electronic properties of ordered perovskite-type compounds Ba2MIrO6 (M = La, Y) by use of density functional theory. Cubic (Fm-3m), rhombohedral (R-3) and monoclinic (P2(1)/n) phases are considered for each compound. It was found that the most energetically stable phase for Ba2YIrO6 and Ba2LaIrO6 is P2(1)/n andR-3, respectively. It is also interesting to find that Ba2YIrO6 in R-3 phase, which was not reported in experiment, has a slightly lower energy than experimentally observed cubic Fm-3m phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural stability and electronic properties of Co2N, Rh2N and Ir2N were Studied by using the first principles based on the density functional theory. Two Structures were considered for each nitride, orthorhombic Pnnm phase and cubic Pa (3) over bar phase. The results show that they are all mechanically stable. Co2N in both phases are thermodynamically stable due to the negative formation energy, while the remaining two compounds are thermodynamically unstable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural, mechanical and electronic properties Of OsC2 were investigated by use of the density functional theory. Seven structures were considered, i.e., orthorhombic Cmca (No. 12, OsSi2), Pmmn (No. 59, 002) and Pnnm (No. 58, OsN2); tetragonal P4(2)/mnm (No. 136, OsO2) and 14/mmm (No. 139, CaC2); cubic Fm-3m (No. 225, CaF2) and Pa-3 (No. 205, PtN2). The results indicate that Cmca in OsSi2 type structure is energetically the most stable phase among the considered structures. It is also stable mechanically. OsC2 in Pmmn phase has the largest bulk modulus 319 GPa and shear modulus 194 GPa. The elastic anisotropy is discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure and mechanical properties of beta-nucleated iPP before and after being annealed at different temperatures (90-160 degrees C) have been analyzed, Annealing induced different degrees of variation in fracture toughness of beta-nucleated iPP samples. namely, slight enhancement at relatively low annealing temperatures (< 110 degrees C) and great improvement at moderate temperatures (120-130 degrees C), whereas dramatic deterioration at relatively high temperatures ( > 140 degrees C) has been observed. The variation of fracture toughness of beta-nucleated iPP is observed to be dependent on the content of beta-NA. Experiments, including scanning electronic microscope (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA), are performed to study the variations of microstructures as well as the toughening mechanism of the beta-nucleated iPP after being annealed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a facile one-step route to controlled synthesis of colloidal KMgF3 nanocrystals via the thermolysis of metal trifluoroacetate precursors in combined solvents (OA/OM) using microwave irradiation. X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared (FT-IR) spectra, and photoluminescence (PL) spectra were employed to characterize the samples. Only through the variation of the OA/OM ratio, can the phase and shape of nanocrystals be readily controlled, resulting in the formation of well-defined near-spherical nanoparticles, and nanoplates of cubic-phased KMgF3, as well as nanorods of tetragonal-phased MgF2, and a possible mechanism has been proposed to elucidate this effect. Furthermore, all these samples in this system can be well dispersed in nonpolar solvents such as cyclohexane to form stable and clear colloidal solutions, due to the successful coating of organic surfactants (OA/OM) on the nanocrystal surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the film thickness (l(0)) effect on the phase and dewetting behaviors of the blend film of poly(methyl methacrylate)/poly (styrene-ran-acrylonitrile) (PMMA/SAN) has been studied by in situ atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The thinner film shows the more compatibility of the blend, and the phase separation of the film occurs at l(0) > 5R(g) (radius of gyration). An initially time-independent q*, the characteristic wavenumber of the phase image, which is in good agreement of Cahn's linearized theory for the early stage of spinodal decomposition, has been obtained in real space and discussed in detail. For 5R(g) > l(0) > 3R(g), a "pseudo-dewetting/(phase separation + wetting)" behavior occurs, where the pseudo-wetting is driven by the concentration fluctuation mechanism. For 10 < 3R(g), a "real dewetting/(phase separation + wetting)" behavior occurs.