180 resultados para electro-optic modulator
Resumo:
By employing a uniformly compact side-pumping system, a high-energy electro-optical Q-switched Nd:YAG ceramic laser has been demonstrated. With 420 W quasi-cw laser-diode-array pumping at 808 ran and a 100 Hz modulating repetition rate, 50 mJ output energy at 1064 nm was obtained with 10 ns pulse width, 5 W average output power, and 5 MW peak power. Its corresponding slope efficiency was 29.8%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output energy could be expected. Laser parameters between ceramic and single-crystal Nd:YAG lasers have been compared, and pulse characteristics of Nd:YAG ceramic with different repetition rate have been investigated in detail. The still-evolving Nd:YAG ceramics are potential super excellent media for high-energy laser applications. (C) 2007 Optical Society of America.
Resumo:
A novel acousto-optic switch operation by a simple laser-diode pumped acousto-optic, Q-switched, ytterbium-doped, double-clad fiber laser is reported. Stable compressed Q-switched sub-40 ns pulses with a beam quality factor (M-2 = 2) are achieved at the repetition rate of 1-50 kHz. Q-switched pulses of similar to 20 mu J pulse energy and 35 as pulse width are obtained at the repetition rate of 50 kHz. Finally, a reasonable explanation of the novel Q-switched operation is presented. (c) 2007 Optical Society of America.
Resumo:
A polarization modulator based on splitting with a Savart plate and rotation of an analyzer for a moire system with grating imaging is presented, and its modulation principle is analyzed. The polarization modulator is simple and achromatic. It is composed of a polarizer, a Savart plate, and an analyzer. The polarizer and the Savart plate are placed in front of the index grating to split the image of the scale grating in the moire system. The analyzer is placed behind the grating and rotated to realize the modulation of the moire signal. The analyzer can be rotated either continually with high speed or step by step with low speed to form different modulation modes. The polarization modulator makes the moire system insensitive to the change of initial intensity. In experiments, we verified the usefulness of the polarization modulator.
Resumo:
The FOB-3, anew type fiber optic biosensor, is designed to rapidly detect a variety of biological agents or analytes with better stability, sensitivity and specificity. In order to detect Y. Pestis, a sandwich immunoassay was developed by using the purified antibody against antigen FI immobilized on polystyrene probes as the capture antibody and the monoclonal antibody-Cy5 conjugate as the detector. After a series of optimization for the stability, sensitivity and specificity of the FOB-3, 50-1000 ng/ml of antigen FI and 6 x 10(1)-6 x 10(7) CFU/ml Y. pestis could be detected constantly in about 20 min, and Y pestis could be detected specifically from Y. pseudotuberculosis, Y. enterocolitica, B. anthracis and E. coli. Then, 39 blind samples, including 27 tissues of mice infected with Y pestis and 12 tissues of healthy mice as negative control, were detected with the FOB-3. 92.6% infected tissues were identified from the tissues of healthy mice and the tissues containing more than 100 CFU/ml bacteria could be detected by the biosensor. The results demonstrated the feasibility of the FOB-3 as an effective method to detect Y. pestis rapidly and directly from the infected animal specimens with the advantage of portability, simple-operation as well as high sensitivity and specificity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A new calibration method for a photoelastic modulator is proposed. The calibration includes a coarse calibration and a fine calibration. In the coarse calibration, the peak retardation of the photoelastic modulator is set near 1.841 rad. In the fine calibration, the value of the zeroth Bessel function is obtained. The zeroth Bessel function is approximated as a linear equation to directly calculate the peak retardation. In experiments, the usefulness of the calibration method is verified and the calibration error is less than 0.014 rad. The calibration is immune to the intensity fluctuation of the light source and independent of the circuit parameters. The method specially suits the calibration of a photoelastic modulator with a peak retardation of less than a half-wavelength. (c) 2007 Optical Society of America.
Resumo:
Leber hereditary optic neuropathy (LHON) is the most extensively studied mitochondrial disease, with the majority of the cases being caused by one of three primary mitochondrial DNA (mtDNA) mutations. Incomplete disease penetrance and gender bias are two
Resumo:
The primary mutation m.3460G > A occurs with a very low frequency (similar to 1%) in Chinese patients with Leber hereditary optic neuropathy (LHON). Up to now, there is no comprehensive study of Chinese patients harboring this mutation. We characterized six unrelated probands with m.3460G > A in this study, which were identified from 1,626 patients with LHON or suspected with LHON. The overall penetrance of LHON (25.6% [10/39]) in four pedigrees with m.3460G > A was substantially lower than those families with m.11778G > A (33.3% [619/1859]) as reported in our previous study. Intriguingly, family Le688 with a heteroplasmic m.3460G > A presented a lower penetrance (12.5%) than the other three families with a homoplasmic mutation. There is an elevated gender bias (affected male to affected female = 4:1) in the four families with m.3460G > A compared to those LHON families with m.11778G > A (2.4:1). Complete mtDNA sequencing indicated that the six matrilines belonged to haplogroups B4d1, F2, A5b, M12a, D4b2b, and D4b2, respectively. We did not identify any potential secondary mutation(s) that will affect or be associated with the penetrance of LHON in the six probands by using an evolutionary analysis and protein secondary-structure prediction. Taken together, our results suggested that the m.3460G > A mutation occurred multiple times in Chinese LHON patients. The heteroplasmic status of mutation m.3460G > A might influence the penetrance of LHON in family Le688.
Resumo:
Mitochondrial DNA background has been shown to be involved in the penetrance of Leber's hereditary optic neuropathy (LHON) in western Eurasian populations. To analyze mtDNA haplogroup distribution pattern in Han Chinese patients with LHON and G11778A muta
Resumo:
Co-occurrence of double pathogenic mtDNA mutations with different claimed pathological roles in one mtDNA is infrequent. It is tentative to believe that each of these pathogenic mutations would have its own deleterious effect. Here we reported one three-g
Resumo:
Leber hereditary optic neuropathy (LHON) was the first disease to be linked to the presence of a mitochondrial DNA (mtDNA) mutation. Nowadays over 95% of LHON cases are known to be caused by one of three primary mutations (m.11778G>A, m.14484T>C, and m.34
Resumo:
A wafer-level testable silicon-on-insulator-based microring modulator is demonstrated with high modulation speed, to which the grating couplers are integrated as the fiber-to-chip interfaces. Cost-efficient fabrications are realized with the help of optical structure and etching depth designs. Grating couplers and waveguides are patterned and etched together with the same slab thickness. Finally we obtain a 3-dB coupling bandwidth of about 60nm and 10 Gb/s nonreturn-to-zero modulation by wafer-level optical and electrical measurements.
Resumo:
We present the monolithic integration of a sampled-grating distributed Bragg reflector (SC-DBR) laser with a quantum-well electroabsorption modulator (QW-EAM) by combining ultra-low-pressure (55 mbar) selective-area-growth (SAG) metal-organic chemical vapour deposition (MOCVD) and quantum-well intermixing (QWI) for the first time. The QW-EAM and the gain section can be grown simultaneously by using SAG MOCVD technology. Meanwhile, the QWI technology offers an abrupt band-gap change between two functional sections, which reduces internal absorption loss. The experimental results show that the threshold current I-th = 62 mA, and output power reaches 3.6 mW. The wavelength tuning range covers 30 nm, and all the corresponding side mode suppression ratios are over 30 dB. The extinction ratios at available wavelength channels can reach more than 14 dB with bias of -5 V.
A traveling-wave electroabsorption modulator with a large optical cavity and intrastep quantum wells
Resumo:
This paper reports a novel traveling-wave electroabsorption modulator (TWEAM) with a large optical cavity waveguide and an intrastep quantum well structure designed to achieve a high bandwidth, high saturation power and better fiber-matched optical profile, which is good for high coupling efficiency. The optical mode characteristic shows a great improvement in matching the circular mode of the fiber and the saturation power of 21 dBm, and a 3 dB bandwidth of 23 GHz was achieved for the fabricated TWEAM.