177 resultados para distillate composition
Resumo:
Ge composition dependence on the Ge cell temperature has been studied during the growth of Si1-xGex by disilane and solid Ge molecular beam epitaxy at a substrate temperature of 500 degrees C. It is found that the composition x increases and then saturates when the Ge cell temperature increases, which is different from the composition-dependent behavior in growth at high temperature as well as in growth by molecular beam epitaxy using disilane and germane. The enhanced hydrogen desorption from a Ge site alone cannot account for this abnormal composition-variation behavior. We attribute this behavior to the increase of rate constant of H desorption on a Si site when the Ge cell temperature increases.
Resumo:
The deviation from the stoichiometric composition of single-crystal 'Er2Co17' has been determined by theoretical analysis. It is found that the composition of this single-crystal 'Er2Co17' is rich in cobalt, and its real composition is suggested to be Er2-deltaCo17+2 delta (delta = 0.14) on the basis of a comparison of calculations based on the single-ion model with a series of experiments. The values of the Er-Co exchange field H-ex and the crystalline-electric-field (CEF) parameters A(n)(m) at the rare-earth (R) site in the 'Er2Co17' compound are also evaluated at the same time. The experiments provide the following data: the temperature dependence of the spontaneous magnetization of the compounds and the normalized magnetic moment of the Er ion, the magnetization curves dong the crystallographic axes at 4.2 K and 200 K, and the temperature dependence of the magnetization along the crystallographic axes in a field of 4 T.
Resumo:
In this article, the MCs(+)-SIMS technique has been used to characterize Ti/Al2O3 metal/insulator interfaces. Our experiment shows that by detecting MCs(+) secondary ions, the matrix and interface effects are reduced, and good depth profiles have been obtained. The experimental result also shows that with the increase of the annealing temperature (RT, 300 degrees C, 600 degrees C, 850 degrees C), the interface gets broadened gradually, indicating diffusion and reaction take place at the interface, and the interface reaction is enhanced with the increase in annealing temperature. When the temperature increases, the AlCs+ signal forms two plateaus in the Ti layer, indicating Al from the decomposition of Al2O3 diffuses into the Ti layer and exists as two new forms (phases). Also, with the increase of the annealing temperature, oxygen diffuses into the Ti layer gradually, and makes the O signal in the Ti layer increase significantly in the 850 degrees C annealed sample.
Resumo:
A novel unselective regrowth buried heterostructure long-wavelength superluminescent diode (SLD) with a graded composition bulk InGaAs active region is developed by metalorganic vapor phase epitaxy (MOVPE). At a 150mA injection current, the full width at half maximum of the emission spectrum of the SLD is about 72nm, ranging from 1602 to 1674nm. The emission spectrum is smooth and flat. The ripple of the spectrum is less than 0.3dB at any wavelength from 1550 to 1700nm. An output power of 4.3mW is obtained at a 200mA injection current under continuous-wave operation at room temperature. This device is suitable for the applications of light sources for gas detectors and L-band optical fiber communications.
Resumo:
We have achieved in-situ Si incorporation into cubic boron nitride (c-BN) thin films during ion beam assisted deposition. The effects of silicon incorporation on the composition, structure and electric conductivity of c-BN thin films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrical measurements. The results suggest that the content of the cubic phase remains stable on the whole with the incorporation of Si up to a concentration of 3.3 at.%, and the higher Si concentrations lead to a gradual change from c-BN to hexagonal boron nitride. It is found that the introduced Si atoms only replace B atoms and combine with N atoms to form Si-N bonds, and no evidence of the existence of Si-B bonds is observed. The resistance of the Si-doped c-BN films gradually decreases with increasing Si concentration, and the resistivity of the c-BN film with 3.3 at.% Si is lowered by two orders of magnitude as compared to undoped samples.