501 resultados para Semiconductors amorfs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

in experiment, characteristics of silicon microring/racetrack resonators in submicron rib waveguides have been systematically investigated. It is demonstrated that only a transverse-electric mode is guided for a ratio of slab height to rib height h/H = 0.5. Thus, these microring/racetrack resonators can only function for quasi-transverse-electric mode, while they get rid of transverse-magnetic polarization. Electron beam lithography and inductively coupled plasma etching were employed and improved to reduce side-wall roughness for low propagation loss and high performance resonators. Then, the effects of waveguide dimensions, coupling region design, waveguide roughness, and oxide cladding for the resonators have been considered and analyzed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theoretical electron mobility limited by dislocation scattering of a two-dimensional electron gas confined near the interface of AlxGa1-xN/GaN heterostructures was calculated. Based on the model of treating dislocation as a charged line, an exponentially varied potential was adopted to calculate the mobility. The estimated mobility suggests that such a choice can simplify the calculation without introducing significant deviation from experimental data, and we obtained a good fitting between the calculated and experimental results. It was found that the measured mobility is dominated by interface roughness and dislocation scattering at low temperatures if dislocation density is relatively high (>10(9) cm(-2)), and accounts for the nearly flattening-out behavior with increasing temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have systematically investigated the magnetic properties of Si-doped (Ga,Mn)As films. When the Si content is low, both Curie temperature (T-C) and carrier density (p) decrease compared with undoped (Ga,Mn)As, whereas a monotonic increase of T-C and p is observed with further increase in the doping content of Si. We discuss the possible mechanism for the changes obtained by different Si doping contents and attribute the results to a competition between the existence of Si-Ga (Si substitutes for Ga site) that acts as a donor and Si-I (Si interstitials) which is in favor of the improvement of ferromagnetism. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using first-principles methods we have calculated electronic structures, optical properties, and hole conductivities of CuXO2 (X=Y, Sc, and Al). We show that the direct optical band gaps of CuYO2 and CuScO2 are approximately equal to their fundamental band gaps and the conduction bands of them are localized. The direct optical band gaps of CuXO2 (X=Y, Sc, and Al) are 3.3, 3.6, and 3.2 eV, respectively, which are consistent with experimental values of 3.5, 3.7, and 3.5 eV. We find that the hole mobility along long lattice c is higher than that along other directions through calculating effective masses of the three oxides. By analyzing band offset we find that CuScO2 has the highest valence band maximum (VBM) among CuXO2 (X=Y, Sc, and Al). In addition, the approximate transitivity of band offset suggests that CuScO2 has a higher VBM than CuGaO2 and CuInO2 [Phys. Rev. Lett. 88, 066405 (2002)]. We conclude that CuScO2 has a higher p-type doping ability in terms of the doping limit rule. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2991157]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a first-principles method, we investigate the structural and electronic properties of grain boundaries (GBs) in polycrystalline CdTe and the effects of copassivation of elements with far distinct electronegativities. Of the two types of GBs studied in this Letter, we find that the Cd core is less harmful to the carrier transport, but is difficult to passivate with impurities such as Cl and Cu, whereas the Te core creates a high defect density below the conduction band minimum, but all these levels can be removed by copassivation of Cl and Cu. Our analysis indicates that for most polycrystalline systems copassivation or multipassivation is required to passivate the GBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under normal incidence of circularly polarized light at room temperature, a charge current with swirly distribution has been observed in the two-dimensional electron gas in Al0.25Ga0.75N/GaN heterostructures. We believe that this anomalous charge current is produced by a radial spin current via the reciprocal spin Hall effect. It suggests a new way to research the reciprocal spin Hall effect and spin current on the macroscopic scale and at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blue-green GaN-based vertical cavity surface emitting lasers (VCSELs) were fabricated with two dielectric Ta2O5/SiO2 distributed Bragg reflectors. Lasing action was observed at a wavelength of 498.8 nm at room temperature under optical pumping. Threshold energy density and emission linewidth were 189 mJ/cm(2) and 0.15 nm, respectively. The result demonstrates that blue-green VCSELs can be realised using III-nitride semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anisotropic exchange splitting (AES) is induced by the joint effects of the electron-hole exchange interaction and the symmetry reduction in quantum wells and quantum dots. A model has been developed to quantitatively obtain the electron-hole exchange energy and the hole-mixing energy of quantum wells and superlattices. In this model, the AES and the degree of polarization can both be obtained from the reflectance difference spectroscopy. Thus the electron-hole exchange energy and the hole-mixing energy can be completely separated and quantitatively deduced. By using this model, a (001)5 nm GaAs/7 nm Al0.3Ga0.7As superlattice sample subjected to [110] uniaxial strains has been investigated in detail. The n=1 heavy-hole (1H1E) exciton can be analyzed by this model. We find that the AES of quantum wells can be linearly tuned by the [110] uniaxial strains. The small uniaxial strains can only influence the hole-mixing interaction of quantum wells, but have almost no contribution to the electron-hole exchange interaction. (c) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-color time-resolved Kerr rotation spectroscopy system was built, with a femtosecond Ti:sapphire laser and a photonic crystal fiber, to study coherent spin transfer processes in an InGaAs/GaAs quantum well sample. The femtosecond Ti:sapphire laser plays two roles: besides providing a pump beam with a tunable wavelength, it also excites the photonic crystal fiber to generate supercontinuum light ranging from 500 nm to 1600 nm, from which a probe beam with a desirable wavelength is selected with a suitable interference filter. With such a system, we studied spin transfer processes between two semiconductors of different gaps in an InGaAs/GaAs quantum well sample. We found that electron spins generated in the GaAs barrier were transferred coherently into the InGaAs quantum well. A model based on rate equations and Bloch-Torrey equations is used to describe the coherent spin transfer processes quantitatively. With this model, we obtain an effective electron spin accumulation time of 21 ps in the InGaAs quantum well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristics of whispering-gallery modes (WGMs) in 3-D cylindrical, square, and triangular microcavities with vertical optical confinement of semiconductors are numerically investigated by the finite-difference time-domain (FDTD) technique. For a microcylinder with a vertical refractive index 3.17/3.4/3.17 and a center layer thickness 0.2 mu m, Q-factors of transverse electric (TE) WGMs around wavelength 1550 nm are smaller than 10(3), as the radius R < 4 mu m and reach the orders of 10(4) and 10(6) as R = 5 and 6 mu m, respectively. However, the Q-factor of transverse magnetic (TM) WGMs at wavelength 1.659 mu m reaches 7.5 x 10(5) as R = 1 mu m. The mode coupling between the WGMs and vertical radiation modes in the cladding layer results in vertical radiation loss for the WGMs. In the microcylinder, the mode wavelength of TM WGM is larger than the cutoff wavelength of the vertical radiation mode with the same mode numbers, so TM WGMs cannot couple with the vertical radiation mode and have high Q-factor. In contrast, TE WGMs can couple with the corresponding vertical radiation mode in the 3-D microcylinder as R < 5 mu m. However, the mode wavelength of the TE WGM approaches (is larger than) the cutoff wavelength of the corresponding radiation modes at R = 5 mu m (6 mu m), so TE WGMs have high Q-factors in such microcylinders too. The results show that a critical lateral size is required for obtaining high, Q-factor TE WGMs in the 3-D microcylinder. For 3-D square and triangular microcavities, we also find that the Q-factor of TM WGM is larger than that of TE WGM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high-mobility low density two-dimensional electron gas in a GaAs/Al0.35Ga0.65As heterostructure in the dependence on temperature from 1.5 to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, which is superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to the D'yakonov-Perel' mechanism becomes weakest. These results agree with the recent theoretical predictions [J. Zhou et al., Phys. Rev. B 15, 045305 (2007)], which verify the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hexagonal nanopillars with a single InGaAs/GaAs quantum well (QW) were fabricated on a GaAs (111) B substrate by selective-area metal-organic vapor phase epitaxy. The standard deviations in diameter and height of the nanopillars are about 2% and 5%, respectively. Zincblende structure and rotation twins were identified in both the GaAs and the InGaAs layers by electron diffraction. The excitation-power-density-dependent micro-photoluminescence (mu-PL) of the nanopillars was measured at 4.2, 50, 100 and 150 K. It was shown that, with increasing excitation power density, the mu-PL peak's positions shift to a higher energy, and their intensity and width increase, which were rationalized using a model that includes the effects of piezoelectricity, photon-screening and band-filling. It was also revealed that the rotation twins significantly reduce the diffusion length of the carriers in the nanopillars, compared to that in the regular semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure and Lande electron g-factors of manganese-doped HgTe quantum spheres are investigated, in the framework of the eight-band effective-mass model and the mean-field approximation. It is found that the electronic structure evolves continuously from the zero-gap configuration to an open-gap configuration with decreasing radius. The size dependence of electron g-factors is calculated with different Mn-doped effective concentration, magnetic field, and temperature values, respectively. It is found that the variations of electron g-factors are quite different for small and large quantum spheres, due to the strong exchange-induced interaction and spin-orbit coupling in the narrow-gap DMS nanocrystals. The electron g-factors are zero at a critical point of spherical radius R-c; however, by modulating the nanocrystal size their absolute values can be turned to be even 400 times larger than those in undoped cases. Copyright (c) EPLA, 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the density functional theory, we study the magnetic coupling properties of Mn-doped ZnO nanowires. For the nanowires with passivated surfaces, the antiferromagnetic state is found and the Mn atoms have a clustering tendency. When the distance between two Mn atoms is large, the system energetically favors the paramagnetic or spin-glass state. For the nanowires with unpassivated surfaces, the ferromagnetic (FM) coupling states appear between the two nearest Mn atoms, and the zinc vacancies can further stabilize the FM states between them. The electrons with enough concentration possibly mediate the FM coupling due to the negative exchange splitting of conduction band minimum induced by the s-d coupling, which could be useful in nanomaterial design for spintronics. (C) 2008 American Institute of Physics.