255 resultados para Radiation sources.
Resumo:
The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer technique, is used to calculate the optical susceptibility. In the presence of a driving THz field, in addition to the usual exciton peaks, 2p replica of the dark 2p exciton and even-THz-photon-sidebands of the main exciton resonance emerge in the continuum above the band edge and below the main exciton resonance. Moreover, to understand the shift of the position of the main exciton peak under intense THz radiation, it is necessary to take into consideration both the dynamical Franz-Keldysh effect and ac Stark effect simultaneously. For moderate frequency fields, the main exciton peak decreases and broadens due to the field-induced ionization of the excitons with THz field increasing. However, for high frequency THz fields, the characteristics of the exciton recur even under very strong THz fields, which accords with the recent experimental results qualitatively.
Resumo:
An (A1As/GaAs/A1As/A1GaAs)/GaAs(001) double-barrier superlattice grown by molecular beam epitaxy (MBE) is studied by combining synchrotron radiation and double-crystal x-ray diffraction (DCD). The intensity of satellite peaks is modulated by the wave function of each sublayer in one superlattice period. Simulated by the x-ray dynamical diffraction theory, it is discovered that the intensity of the satellite peaks situated near the modulating wave node point of each sublayer is very sensitive to the variation of the layer structural parameters, The accurate layer thickness of each sublayer is obtained with an error less than 1 Angstrom. Furthermore, x-ray kinematical diffraction theory is used to explain the modulation phenomenon. (C) 1996 American Institute of Physics.
Resumo:
The effect of a potassium overlayer on nitridation and oxidation of the InP(100) surface is investigated by core-level and valence-band photoemission spectroscopy using synchrotron radiation. In comparison with the K-promoted nitridation of the InP(110) surface obtained by cleavage in situ, we found that the promotive effect for the InP(100) surface cleaned by ions bombardment is much stronger and that the nitridation products consist of two kinds of complexes: InPNx and InPNx+y. The results confirmed that surface defects play an important part in the promotive effect. Furthermore, in contrast with K-promoted oxidation of InP(100) where bonding is observed between indium and oxygen, indium atoms did not react directly with nitrogen atoms during the K-promoted nitridation of InP(100). (C) 1995 American Vacuum Society.
Resumo:
The effect of molecular nitrogen exposure on the surfaces of InP(100) modified by potassium overlayers is investigated by core-level and valence-band photoemission spectroscopy using Synchrotron radiation. In comparison with InP(110) surface, we found the promotion is much stronger for InP(100) surface due to the central role of surface defects in the promotion; furthermore, in contrast with K-promoted oxidation of InP(100) where the bonding is observed between indium and oxygen, indium atoms did not react directly with nitrogen atoms during the K-promoted nitridation of InP(100).
Resumo:
Radiation hardness of SIMOX(separation by implanted oxygen)/NMOSFET by implanting N and F ion has been carefully studied in this paper.Both N and F ion implantation can reduce hole traps in the buried oxide and the interfacial regions,which consequently improves the radiation hardness,especially under high dose radiation conditions.Moreover,experimental data show that the higher dose of the N and F ion implantation is,the better radiation hardness is achieved.In order to minimize the influence on the threshold voltage of devices,it is important to choose suitable implantation dose and energy of N or F implantation that have smaller impact on the preradiation device performance.
Resumo:
This paper presents the total dose radiation performance of 0. S^m SOI CMOS devices fabricated with full dose SIMOX technology. The radiation performance is characterized by threshold voltage shifts and leakage currents of transistors and standby currents of ASIC as functions of the total dose up to 500krad(Si) .The experimental results show that the worst case threshold voltage shifts of front channels are less than 320mV for pMOS transistors under off-gate radiation bias at lMrad(Si) and less than 120mV for nMOS transistors under on-gate radiation bias. No significant radiation-induced leakage current is observed in transistors to lMrad(Si). The standby currents of ASIC are less than the specification of 5μA over the total dose range of 500krad(Si).
Resumo:
In order to improve the total-dose radiation hardness of the buried oxides(BOX) in the structure of separa tion-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI), nitrogen ions are implanted into the buried oxides with two different doses,2 × 1015 and 3 × 1015 cm-2 , respectively. The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source. Despite the small difference between the doses of nitrogen implantation, the nitrogen-implanted 2 × 1015 cm-2 BOX has a much higher hardness than the control sample (i. e. the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5 × 104rad(Si), whereas the nitrogen-implanted 3 × 1015 cm-2 BOX has a lower hardness than the control sample. However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5 × 104 to 5 × 105 rad (Si)). The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed. In addition, the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.
Resumo:
于2010-11-23批量导入