130 resultados para RCE photodetector
Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors
Resumo:
We investigated the influence of thickness of p-GaN layer on the performance of p-i-n structure GaN ultraviolet photodetector. Through the simulation calculation, it was found that both the quantum efficiency and dark current of device decrease when employing thicker p-GaN layer, while both the quantum efficiency and dark current increase with decreasing thickness of p-GaN layer. It is suggested that the Schottky contact junction between the metal and p-GaN may be responsible for the incompatible effect. We has to make a suitable choice of the thickness of p-GaN in the device design according to the application requirement.
Resumo:
Finite difference time domain (FDTD) method is used for the simulation and analysis of electromagnetic field in the top coupling layer of GaAs/AlGaAs quantum well infrared photodetector (QWIP). Simulation results demonstrated the coupling efficiencies and distributions of electromagnetic (EM) field in a variety of 2D photonic crystal coupling layer structures. A photonic crystal structure for bi-color-QWIP is demonstrated with high coupling efficiency for two wavelengths.
Resumo:
Si-based photonic materials and devices, including SiGe/Si quantum structures, SOI and InGaAs bonded on Si, PL of Si nanocrystals, SOI photonic crystal filter, Si based RCE (Resonant Cavity Enhanced) photodiodes, SOI TO (thermai-optical) switch matrix were investigated in Institute of Serniconductors, Chinese Academy of Sciences. The main results in recent years are presented in the paper. The mechanism of PL from Si NCs embedded in SiO2 matrix was studied, a greater contribution of the interface state recombination (PL peak in 850 similar to 900 nm) is associated with larger Si NCs and higher interface state density. Ge dots with density of order of 10(11) cm(-2) were obtained by UHV/CVD growth and 193 nm excimer laser annealing. SOI photonic crystal filter with resonant wavelength of 1598 nm and Q factor of 1140 was designed and made. Si based hybrid InGaAs RCE PD with eta of 34.4% and FWHM of 27 nut were achieved by MOCVD growth and bonding technology between InGaAs epitaxial and Si wafers. A 16x16 SOI optical switch matrix were designed and made. A new current driving circuit was used to improve the response speed of a 4x4 SOI rearrangeable nonblocking TO switch matrix, rising and failing time is 970 and 750 ns, respectively.
Resumo:
We develop a swept frequency method for measuring the frequency response of photodetectors; (PDs) based on harmonic analysis. In this technique, a lightwave from a laser source is modulated by a radio-frequency (RF) signal via a Mach-Zehnder LiNbO3 modulator, and detected by a PD under test. The measured second-order harmonic of the RF signal contains information of the frequency responses and nonlinearities of the RF source, modulator, and PD. The frequency response of the PD alone is obtained by deducting the known frequency responses and nonlinearities of the RF source and modulator. Compared with the conventional swept frequency method, the measurement frequency range can be doubled using the proposed method. Experiment results show a good agreement between the measured results and those obtained using other techniques.
Resumo:
The characteristics of whispering-gallery-like modes in the equilateral triangle and square microresonators are introduced, including directional emission triangle and square microlasers connected to an output waveguide. We propose a photonic interconnect scheme by connecting two directional emission microlasers with an optical waveguide on silicon integrated circuit chip. The measurement indicates that the triangle microlasers can work as a resonance enhanced photodetector for optical interconnect.
Resumo:
In this work, a novel bonding method using silicate gel as the bonding medium was developed to fabricate an InGaAs narrow-band response resonant cavity enhanced photodetector on a silicon substrate. The bonding was performed at a low temperature of 350 degreesC without any special treatment on bonding surfaces and a Si-based narrow-band response InGaAs photodetector was successfully fabricated, with a quantum efficiency of 34.4% at the resonance wavelength of 1.54 mum, and a full-width at half-maximum of about 27 nm. The photodetector has a linear photoresponse up to 4-mW optical power under 1.5 V or higher reverse bias. The low temperature wafer bonding process demonstrates a great potential in device fabrication.
Resumo:
Zn1-xMgxS-based Schottky barrier ultraviolet (UV) photodetectors were fabricated using the molecular-beam-epitaxy (MBE) technique. The influence of Mg content on MBE-grown Zn1-xMgxS-based UV photodetectors has been investigated in details with a variety of experimental techniques, including photoresponse (PR), capacitance-voltage, deep level transient Fourier spectroscopy (DLTFS) and photoluminescence (PL). The room-temperature PR results show that the abrupt long-wavelength cutoffs covering 325, 305 295. and 270 nm with Mg contents of 16%, 44%, 57%, and 75% in the Zn1-xMgxS active layers, respectively, were achieved. But the responsivity and the external quantum efficiency exhibited a slight decrease with the Mg content increasing. In good agreement with the PR results, both of the integrated intensity of the PL spectra obtained from Zn1-xMgxS thin films with different Mg compositions (x = 31% and 52%, respectively) and the DLTFS spectra obtained from Zn1-xMgxS-based (x = 5% and 45%, respectively) UV photodetector samples clearly revealed a significant concentration increase of the non-radiative deep traps with increasing Mg containing in the ZnMgS active layers. Our experimental results also indicate that the MBE-grown ZnMgS-based photodetectors can offer the promising characteristics for the detection of short-wavelength UV radiation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have fabricated a resonant-cavity-enhanced photodiode (RCE-PD) with InGaAs quantum dots (QDs) as an active medium. This sort of QD-embedded RCE-PD is capable of a peak external quantum efficiency of 32% and responsivity of 0.27A/W at 1.058 mu m with a full width at half maximum (FWHM) of 5 nm. Angle-resolved photocurrent response eventually proves that with the detection angle changing from 0 degrees to 60 degrees, the peak-current wavelength shifts towards the short wavelength side by 37 nm, while the quantum efficiency remains larger than 15%.
Resumo:
In this paper, we have calculated and discussed in detail the nonlinear effect induced by three carrier effects: free-carrier absorption, bandgap filling, and bandgap shrinkage. The central wavelength of response of resonant-cavity-enhanced (RCE) photodetectors shifts according to the change of the refractive index, and the response of a given optical wavelength simultaneously changes.With an increasing As composition of ln(1-x)Ga(x)As(y)P(1-y) and the spacer thickness, the nonlinear effect increases, but the -1-dB input saturation optical power and the -1-dB saturation photocurrent decrease. Bistable-state operation occurs when the input optical power is in the proper bistable region.
Resumo:
We propose and demonstrate measurement of the frequency response of an electroabsorption (EA) modulator using an extended small-signal power measuring technique. In this technique, the modulator is driven by a microwave carrier amplitude modulated by a low-frequency signal, and the modulator frequency response is obtained without the need of a high-speed photodetector. Based upon the nonlinear characteristics of the EA modulator and the underlying principle of the present method, equations have been derived. A measurement scheme using a network analyzer and a low-speed photodetector has been proposed and constructed, and the experimental results confirm that our proposed method is as accurate as the swept-frequency measurement using a network analyzer directly.
Resumo:
A simple method for estimating the frequency responses of directly modulated lasers from optical spectra is presented. The frequency-modulation index and intensity-modulation index of a distributed feedback laser can be obtained through the optical spectrum analyses. The main advantage is that the measurement setup is very simple. Only a microwave source and an optical spectrum analyser are needed and there is no need to use a calibrated broadband photodetector. Experiment shows that the proposed method is as accurate as the swept frequency method using a network analyzer and is applicable to a wide range of modulation powers.
Resumo:
Self-assembly Ge quantum dots (QD) on Si and Si/Ge mutli-quantum-wells (MQW) are grown by MBE. The island size and island density was investigated by atomics force microscopy. Ten-layer and twenty-layer MQW were selected for photodiode device fabrication. In photoluminescence (PL), a broad peak around 1.55-mu m wavelength was observed with higher peak intensity for the 10-layer MQW which had less defects than the 20-layer sample. Resonant cavity enhanced (RCE) photodiodes were fabricated by bonding on a SOI wafer. Selected responsivity at 1.55 mu m was successfully demonstrated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An improved optical self-heterodyne method utilizing a distributed Bragg reflector (DBR) tunable laser and an optical fiber ring interferometer is presented in this paper. The interference efficiency can be increased by 7 dB compared with the scheme using the conventional Mach-Zehnder interferometer. The unsteady process that the beating frequency experiences in each tuning period is investigated. According to the measurement results, the wavelength and optical power of the tunable laser will be steady when the square-wave frequency is lower than 300 kHz. It has been shown that when a square-wave voltage is applied to the phase section of the tunable laser, the laser linewidths vary in a wide range, and are much larger than that under dc voltage tuning. The errors caused by the variations in the linewidth of the beat signal and optical power can be eliminated using the proposed calibration procedures, and the measurement accuracy can, therefore, be significantly improved. Experiments show that the frequency responses obtained using our method agree well with the data provided by the manufacturer, and the improved optical self-heterodyne method is as accurate as the intensity noise technique.
Resumo:
Proceeding from the consideration of the demands from the functional architecture of high speed, high capacity optical communication network, this paper points out that photonic integrated devices, including high speed response laser source, narrow band response photodetector high speed wavelength converter, dense wavelength multi/demultiplexer, low loss high speed response photo-switch and multi-beam coupler are the key components in the system. The, investigation progress in the laboratory will be introduced.
Resumo:
A back-incident Si-0.65 Ge-0.35/Si multiple quantum-well resonant-cavity-enhanced photodetector operating near 1.3 mum is demonstrated on a separation-by-implantation-oxygen substrate. The resonant cavity is composed of an electron-beam evaporated SiO2-Si distributed Bragg reflector as a top mirror and the interface between the buried SiO2 and the Si substrate as a bottom mirror. We have obtained the responsivity as high as 31 mA/WI at 1.305 mum and the full width at half maximum of 14 nm.