229 resultados para NEUTRON DIFFRACTION
Resumo:
Cubic GaN was grown on GaAs(100) by low pressure metal organic chemical vapor deposition (MOCVD). X-ray diffraction, scanning electron microscope (SEM) and photoluminescence (PL) spectra were performed to characterize the quality of the GaN film. The PL spectra of cubic GaN thin films being thicker than 1.5 mu m were reported. Triple-crystal diffraction to analyze orientation distributions and strain of the thin films was also demonstrated.
Resumo:
Fe-57 Mossbauer spectra for the Fe atoms in the R3Fe29-xTx (R=Y, Ce, Nd, Sm, Gd, Tb, Dy; T=V, Cr) compounds were collected at 4.2 K. The analysis of Mossbauer spectra was based on the results of magnetization and neutron powder diffraction measurements. The average Fe magnetic moments at 4.2 K, deduced from our data, are in accord with magnetization measurements. The average hyperfine field of Tb3Fe29-xCrx (x=1.0, 1.5, 2.0, and 3.0) decreases with increasing Cr concentration, which is also in accordance with the variation of the average Fe magnetic moment in the Tb3Fe29-xCrx compounds.
Resumo:
Periodicity fluctuations of layer thickness and composition in a superlattice not only decrease the intensity, they also broaden the width of the satellite peaks in the x-ray diffraction pattern. In this letter, we develop a method that is dependent on the width of satellite peaks to assess periodicity fluctuations of a superlattice quickly. A linear relation of the magnitude of fluctuations, peak width and peak order has been derived from x-ray diffraction kinematical theory. By means of this method, periodicity fluctuations in strained (GaNAs)(1)(GaAs)(m) superlattices grown on GaAs substrates by molecular beam epitaxy have been studied. Distinct satellite peaks indicate that the superlattices are of high quality. The N composition of 0.25 and its fluctuation of 20% in a strained GaNxAs1-x monolayer are obtained from simulations of the measured diffraction pattern. The x-ray simulations and in situ observation results of reflection high-energy electron diffraction are in good agreement. (C) 1999 American Institute of Physics. [S0003-6951(99)00828-1].
Resumo:
Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A novel method, based on an infrared absorption and neutron irradiation technique, has been developed for the determination of interstitial oxygen in heavily boron-doped silicon. The new procedure utilizes fast neutron irradiated silicon wafer specimens. On fast neutron irradiation, the free carriers of high concentration in silicon can be trapped by the irradiated defects and the resistivity increased. The resulting calibration curve for the measurement of interstitial oxygen in boron-doped silicon has been established on the basis of the annealing behaviour of irradiated boron-doped CZ silicon.
Resumo:
We presented a series of symmetric double crystal X-ray diffraction (DCXD) measurements, (0 0 4), (2 2 0) and (2 - 2 0) diffraction, to investigate the strain relaxation in an InAs film grown on a GaAs(0 0 1) substrate. The strain tensor and rotation tensor were calculated according to the DCXD results. It is found that the misfit strain is relaxed nearly completely and the strain relaxation caused a triclinic deformation in the epilayer. The lattice parameter along the [1 1 0] direction is a little longer than that along the [1 - 1 0] direction. Furthermore, a significant tilt, 0.2 degrees, towards the [1 1 0] direction while a very slight one: 0.002 degrees, towards [1 - 1 0] direction were discussed. This anisotropic strain relaxation is attributed to the asymmetric distribution of misfit dislocations, which is also indicated by the variation of the full-width at half-maximum (FWHM) of (0 0 4) diffraction along four azimuth angles. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A series of GaAs/InAs/GaAs samples were studied by double crystal X-ray diffraction and the X-ray dynamic theory was used to analyze the X-ray diffraction results. As the thickness of InAs layer exceeds 1.7 monolayer, 3-dimensional InAs islands appear. Pendellosung fringes shifted. A multilayer structure model is proposed to describe the strain status in the InAs islands of the sample and a good agreement is obtained between the experimental and theoretical curves.
Resumo:
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.
Resumo:
Based on Fresnel-Mrchhoff diffraction theory, a diffraction model of nonlinear optical media interacting with a Gaussian beam has been set up that can interpret the Z-scan phenomenon in a new way. This theory not only is consistent with the conventional Z-scan theory for a small nonlinear phase shift but also can be used for larger nonlinear phase shifts. Numerical computations indicate that the shape of the Z-scan curve is greatly affected by the value of the nonlinear phase shift. The symmetric dispersionlike Z-scan curve is valid only for small nonlinear p base shifts (\Deltaphi(0)\ < pi), but, with increasingly larger nonlinear phase shifts, the valley of the transmittance is severely suppressed and the peak is greatly enhanced. The power output through the aperture will oscillate with increasing nonlinear phase shift caused by the input laser power. The aperture transmittance will attenuate and saturate with increasing Kerr constant. (C) 2003 Optical Society of America.
Resumo:
When a grating is recorded in a bacteriorhodopsin film by two linear parallel polarized beams together with anauxiliary violet light, the diffraction efficiency has a dependence on the polarization orientation of the violet light as well as its intensity. A method for calculating the diffraction efficiency of gratings in bacteriorhodopsin is proposed based on the two-state photochromic model, considering the saturation effect and the polarization status of all the involved lights. It is found that the polarization orientation of the violet light produces an approximate-cosine and an approximate-sine modulation on the steady-state diffraction efficiency separately at low and high intensities, respectively. The parallel polarized violet light can improve the steady-state diffraction efficiency to a larger degree than the perpendicularly polarized violet light when both are at their optimal intensities. The optimal intensity for the parallel polarized violet light is lower than that of the perpendicular polarized one. Thus, the improvement of the steady-state diffraction efficiency is less sensitive to the intensity of perpendicular polarized violet light than to that of parallel polarized violet light. (C) 2008 Optical Society of America.
Resumo:
SPIE