119 resultados para Electric wiring, Interior
Resumo:
Hydrostatic pressure measurements are used to investigate the formation mechanism of electric field domains in doped weakly-coupled GaAs/AlAs superlattices. For the first plateau-like region in the I-V curve, two kinds of sequential resonant tunnelling are observed. For P<2 kbar the high-field domain is formed by the Gamma-Gamma process, while for P>2 kbar the high-field domain is formed by the T-X process. For the second plateau-libe region, the high-field domain is attributed to Gamma-X sequential resonant tunnelling. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We have achieved in-situ Si incorporation into cubic boron nitride (c-BN) thin films during ion beam assisted deposition. The effects of silicon incorporation on the composition, structure and electric conductivity of c-BN thin films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrical measurements. The results suggest that the content of the cubic phase remains stable on the whole with the incorporation of Si up to a concentration of 3.3 at.%, and the higher Si concentrations lead to a gradual change from c-BN to hexagonal boron nitride. It is found that the introduced Si atoms only replace B atoms and combine with N atoms to form Si-N bonds, and no evidence of the existence of Si-B bonds is observed. The resistance of the Si-doped c-BN films gradually decreases with increasing Si concentration, and the resistivity of the c-BN film with 3.3 at.% Si is lowered by two orders of magnitude as compared to undoped samples.
Resumo:
<正>Elasto-capillarity has drawn much of scientists' attention in the past several years.By inducing electric field into the droplet,the encapsulation and release procedure can be realized and we call it electro-elasto-capillarity(EEC).EEC offers a novel method for micro-scale actuation and self-assemble of moveable devices.It also provides a good candidate for the drug delivery at micro- or nanoscale.
Resumo:
In this work the influence of initial liquid volume on the capillary flow in an interior corner is studied systematically by microgravity experiments using the drop tower, under three different conditions: the Concus-Finn condition is satisfied,close to and dissatisfied. The capillary flow is studied by discussing the movement of tip of the meniscus in the corner. Experimental results show that with the increase of initial liquid volume the tip location increases for a given microgravity time, the achievable maximum tip velocity increases and the flow reaches its maximum tip velocity earlier However, the results for the three different conditions show some difference. (C) 2010 Elsevier Ltd All rights reserved
Resumo:
High-spin states of 165Er were studied using the 160Gd(9Be, 4n)reaction at beam energies of 42 and 45 MeV. The previously known bands based on the ν5/2-[523] and ν5/2+[642] configurations have been extended to high-spin states. Electric-dipole transitions linking these two opposite parity bands were observed. Relatively large B(E1) values have been extracted experimentally and were attributed to octupole softness.
Resumo:
IEECAS SKLLQG
Resumo:
With a latest developed electric-sweep scanner system, we have done a lot of experiments for studying this scanner system and ion beam emittance of electron cyclotron resonance (ECR) ion source. The electric-sweep scanner system was installed on the beam line of Lanzhou electron resonance ion source No. 3 experimental platform of Institute of Modem Physics. The repetition experiments have proven that the system is a relatively dependable and reliable emittance scanner, and its experiment error is about 10%. We have studied the influences of the major parameters of ECR ion source on the extracted ion beam emittance. The typical results of the experiments and the conclusions are presented in this article.